🌐 AI搜索 & 代理 主页
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Earliest evidence of making fire

Subjects

Abstract

Fire-making is a uniquely human innovation that stands apart from other complex behaviours such as tool production, symbolic culture and social communication. Controlled fire use provided adaptive opportunities that had profound effects on human evolution. Benefits included warmth, protection from predators, cooking and creation of illuminated spaces that became focal points for social interaction1,2,3. Fire use developed over a million years, progressing from harvesting natural fire to maintaining and ultimately making fire4. However, determining when and how fire use evolved is challenging because natural and anthropogenic burning are hard to distinguish5,6,7. Although geochemical methods have improved interpretations of heated deposits, unequivocal evidence of deliberate fire-making has remained elusive. Here we present evidence of fire-making on a 400,000-year-old buried landsurface at Barnham (UK), where heated sediments and fire-cracked flint handaxes were found alongside two fragments of iron pyrite—a mineral used in later periods to strike sparks with flint. Geological studies show that pyrite is locally rare, suggesting it was brought deliberately to the site for fire-making. The emergence of this technological capability provided important social and adaptive benefits, including the ability to cook food on demand—particularly meat—thereby enhancing digestibility and energy availability, which may have been crucial for hominin brain evolution3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

39,95 €

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Location and site plans of Barnham.
Fig. 2: Photographs of excavation of Area 1 East.
Fig. 3: Schematic diagram through palaeosol complex with analytical results.
Fig. 4: Handaxe and pyrite fragments from palaeosol.

Similar content being viewed by others

Data availability

All data is presented in the Supplementary Information or is linked to Excel spreadsheets.

References

  1. Perles, C. La Prehistoire du Feu (Masson, 1977).

  2. Roebroeks, W. & Villa, P. On the earliest evidence for habitual use of fire in Europe. Proc. Natl Acad. Sci. USA 108, 5209–5214 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wrangham, R. Control of fire in the Paleolithic: evaluating the cooking hypothesis. Curr. Anthrop. 58, S303–S313 (2017).

    Article  Google Scholar 

  4. Gowlett J. A. J. in Sur le chemin de l’humanité. Via humanitatis: les grandes étapes de l’évolution morphologique et culturelle de l’Homme: émergence de l’être humain (ed. de Lumley, H.) 171–197 (Académie Pontificale des Sciences/CNRS, 2015).

  5. James, S. R. Hominid use of fire in the Lower and Middle Pleistocene: s review of the evidence. Curr. Anthropol. 30, 1–26 (1989).

    Article  Google Scholar 

  6. Sandgathe, D. M. et al. Timing of the appearance of habitual fire use. Proc. Natl Acad. Sci. USA 108, E298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goldberg, P., Miller, C. E. & Mentzer, S. M. Recognizing fire in the Paleolithic archaeological record. Curr. Anthrop. 58, S175–S190 (2017).

    Article  Google Scholar 

  8. Gowlett, J. A. J. et al. Early archaeological sites, hominid remains and traces of fire from Chesowanja, Kenya. Nature 294, 125–129 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. Bellomo, R. V. Methods of determining early hominid behavioural activities associated with the controlled use of fire at FxJj 20 Main, Koobi Fora, Kenya. J. Hum. Evol. 27, 173–195 (1994).

    Article  Google Scholar 

  10. Hlubik, S. et al. Researching the Nature of fire at 1.5 Mya on the site of FxJj20 AB, Koobi Fora, Kenya, using high-resolution spatial analysis and FTIR spectrometry. Curr. Anthrop. 58, S243–S257 (2017).

    Article  Google Scholar 

  11. Brain, C. K. & Sillen, A. Evidence from the Swartkrans cave for the earliest use of fire. Nature 336, 464–466 (1988).

    Article  CAS  Google Scholar 

  12. Berna, F. et al. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proc. Natl Acad. Sci. USA 109, E1215–E1220 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alperson-Afil, N., Richter, D. & Goren-Inbar, N. Phantom hearths and the use of fire at Gesher Benot Ya’aqov, Israel. PaleoAnthrop. 2007, 1–15 (2007).

    Google Scholar 

  14. Chazan, M. Toward a long prehistory of Fire. Curr. Anthrop. 58, S351–S359 (2017).

    Article  Google Scholar 

  15. Sorensen, A. C. On the relationship between climate and Neandertal fire use during the Last Glacial in south-west France. Quat. Int. 436A, 114–128 (2017).

    Article  Google Scholar 

  16. Ravon, A.-L. in Crossing the Human Threshold. Dynamic Transformation and Persistent Places during the Middle Pleistocene (eds Pope, M. et al.) 106–122 (Routledge, 2018).

  17. Sanz, M. et al. Early evidence of fire in south-western Europe: the Acheulean site of Gruta da Aroeira (Torres Novas, Portugal). Sci. Rep. 10, 12053 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Lumley, H. Terra Amata, Nice, Alpes-Maritimes, France, Tome V: Comportement et Mode de Vie des Chasseurs Acheuléens de Terra Amata (Editions CNRS, 2016).

  19. Ollé, A. et al. The Middle Pleistocene site of La Cansaladeta (Tarragona, Spain): stratigraphic and archaeological succession. Quat. Int. 393, 137–157 (2016).

    Article  Google Scholar 

  20. Stepanchuk, V. N. & Moigne, A.-M. MIS 11-locality of Medzhibozh, Ukraine: Archaeological and paleozoological evidence. Quat. Int. 409, 241–254 (2016).

    Article  Google Scholar 

  21. Gowlett, J. A. J. et al. Beeches Pit – archaeology, assemblage dynamics and early fire history of a Middle Pleistocene site in East Anglia, UK. Eurasian Prehist. 3, 3–38 (2005).

    Google Scholar 

  22. Sorensen, A. C., Claude, E. & Soressi, M. Neandertal fire-making technology inferred from microwear analysis. Sci. Rep. 8, 10065 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ashton, N. M., Lewis, S. G. & Parfitt, S. A. Excavations at Barnham, Suffolk, 1989-94 (British Museum, 1998).

  24. Ashton, N. M. et al. Handaxe and non-handaxe assemblages during Marine Isotope Stage 11 in northern Europe: Recent investigations at Barnham, Suffolk, UK. J. Quat. Sci. 31, 837–843 (2016).

    Article  Google Scholar 

  25. Preece, R. C. & Penkman, K. E. H. New faunal analyses and amino acid dating of the Lower Palaeolithic site at East Farm, Barnham, Suffolk. Proc. Geol. Assoc. 116, 363–377 (2005).

    Article  Google Scholar 

  26. Voinchet, P. et al. New chronological data (ESR and ESR/U-series) for the earliest Acheulean sites of northwestern Europe. J. Quat. Sci. 30, 610–622 (2015).

    Article  Google Scholar 

  27. Brittingham, A. et al. Geochemical evidence for the control of fire by Middle Palaeolithic hominins. Sci. Rep. 9, 15368 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Denis, E. H. et al. Polycyclic aromatic hydrocarbons (PAHs) in lake sediments record historic fire events: validation using HPLC-fluorescence detection. Org. Geochem. 45, 7–17 (2012).

    Article  CAS  Google Scholar 

  29. Hough, W. Fire-making Apparatus in the United States National Museum (United States Government Printing Office, 1928); https://archive.org/details/firemakingappara0000walt.

  30. Stapert, D. & Johansen, L. Flint and pyrite: making fire in the Stone Age. Antiq. 73, 765–777 (1999).

    Article  Google Scholar 

  31. Sorensen, A. C., Roebroeks, W. & Van Gijn, A.-L. Fire production in the deep past: the expedient strike-a-light model. J. Archaeol. Sci. 42, 476–486 (2014).

    Article  Google Scholar 

  32. Jeans, C. V., Turchyn, A. V. & Hu, X.-F. Sulfur isotope patterns of iron sulfide and barite nodules in the Upper Cretaceous Chalk of England and their regional significance in the origin of coloured chalks. Acta Geologica Polonica 66, 227–256 (2016).

    Article  CAS  Google Scholar 

  33. Bristow, C. R. 1990. Geology of the Country around Bury St Edmunds. Memoir British Geological Survey, Sheet 189 (England and Wales) (British Geological Survey, 1990).

  34. Ander, E. L. et al. Baseline Report Series 13: The Great Ouse Chalk aquifer, East Anglia. Commissioned Report CR/04/236N (British Geological Survey, 2004).

  35. Preece, R. C. et al. Terrestrial environments during MIS 11: evidence from the Palaeolithic site at West Stow, Suffolk, UK. Quat. Sci. Rev. 26, 1236–1300 (2007).

    Article  Google Scholar 

  36. Wiessner, P. W. Embers of society: Firelight talk among the Ju/‘hoansi Bushmen. Proc. Natl Acad. Sci. USA 111, 14027–14035 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gingerich, P. D. Pattern and rate in the Plio-Pleistocene evolution of modern human brain size. Sci. Rep. 12, 11216 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dunbar, R. I. M. The social brain hypothesis. Evol. Anthrop. 6, 178–190 (1998).

    Article  Google Scholar 

  39. Villa, P. & Lenoir, M. in The Evolution of Hominin Diets (eds Hublin, J-J. & Richards, M. P.) 59–85 (Springer, 2009).

  40. Locht, J.-L. et al. Une occupation de la phase ancienne du Paléolithique moyen à Therdonne (Oise): chronostratigraphie, production de pointes Levallois et réduction des nucleus. Gallia Préhistoire 52, 1–32 (2010).

    Article  Google Scholar 

  41. Malinsky-Buller, A. The muddle in the Middle Pleistocene: the Lower–Middle Paleolithic transition from the Levantine perspective. J. World Prehist. 29, 1–78 (2016).

    Article  Google Scholar 

  42. Rots, V. Insights into early Middle Palaeolithic tool use and hafting in Western Europe. The functional analysis of level {IIa} of the early Middle Palaeolithic site of Biache-Saint-Vaast (France). J. Archaeol. Sci. 40, 497–506 (2013).

    Article  Google Scholar 

  43. Mazza, P. et al. A new Palaeolithic discovery: tar-hafted stone tools in a European Mid-Pleistocene bone-bearing bed. J. Archaeol. Sci. 33, 1310–1318 (2006).

    Article  Google Scholar 

  44. Parfitt, S. A. & Bello, S. M. Bone tools, carnivore chewing and heavy percussion: assessing conflicting interpretations of Lower and Upper Palaeolithic bone assemblages. R. Soc. Open Sci. 11, 231163 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Milks, A. et al. A double-pointed wooden throwing stick from Schöningen, Germany: results and new insights from a multianalytical study. PLoS ONE 18, e0287719 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mentzer, S. M. Microarchaeological approaches to the identification and interpretation of combustion features in prehistoric archaeological sites. J. Archaeol. Meth. Theory 21, 616–668 (2014).

    Article  Google Scholar 

  47. Barbetti, M. Traces of fire in the archaeological record, before one million years ago? J. Hum. Evol. 15, 771–781 (1986).

    Article  Google Scholar 

  48. Thieme, H. in The Hominid Individual in Context: Archaeological Investigations of Lower and Middle Palaeolithic Landscapes, Locales and Artefacts (eds Gamble, C. & Porr, M.) 115–132 (Routledge, 2005).

  49. Stahlschmidt, M. C. et al. On the evidence for human use and control of fire at Schöningen. J. Hum. Evol. 89, 181–201 (2015).

    Article  PubMed  Google Scholar 

  50. Stoops, G. Guidelines for Analysis and Description of Soil and Regolith Thin Sections (Soil Science Society of America, 2003).

  51. Stoops, G. Guidelines for Analysis and Description of Soil and Regolith Thin Sections (Wiley, 2021).

  52. Herries, A. I. & Fisher, E. C. Multidimensional GIS modelling of magnetic mineralogy as a proxy for fire use and spatial patterning: evidence from the Middle Stone Age bearing sea cave of Pinnacle Point 13B (Western Cape, South Africa). J. Hum. Evol. 59, 306–320 (2010).

    Article  PubMed  Google Scholar 

  53. Herrejón Lagunilla, Á et al. An experimental approach to the preservation potential of magnetic signatures in anthropogenic fires. PLoS ONE 14, e0221592 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Oldfield, F. & Crowther, J. Establishing fire incidence in temperate soils using magnetic measurements. Palaeogeog. Palaeoclim. Palaeoecol. 249, 362–369 (2007).

    Article  Google Scholar 

  55. Gedye, S. J. et al. The use of mineral magnetism in the reconstruction of fire history: a case study from Lago di Origlio, Swiss Alps. Palaeogeog. Palaeoclim. Palaeoecol. 164, 101–110 (2000).

    Article  Google Scholar 

  56. Dearing, J. A. in Environmental Magnetism: a Practical Guide (eds Walden, J. et al.) 25–62 (Quaternary Research Association, 1999).

  57. Maher, B. A. The magnetic properties of some synthetic submicron magnetites. Geophys. J. R. Astron. Soc. 94, 83–96 (1988).

    Article  CAS  Google Scholar 

  58. Maki, D., Homburg, J. A. & Brosowske, S. D. Thermally activated mineralogical transformations in archaeological hearths: inversion from maghemite γFe2O4 phase to haematite αFe2O4 form. Archaeolog. Prospec. 13, 207–227 (2006).

    Article  Google Scholar 

  59. Liu, Q. et al. Environmental magnetism: principles and applications. Rev. Geophys. 50, 2–50 (2012).

    Article  Google Scholar 

  60. Thompson, R. & Oldfield, F. Environmental Magnetism (Allen and Unwin, 1986).

  61. Linford, N. T. & Canti, M. G. Geophysical evidence for fires in antiquity: preliminary results from an experimental study. Paper given at the EGS XXIV General Assembly in The Hague, April 1999. Archaeol. Prospec. 8, 211–225 (2001).

    Article  Google Scholar 

  62. Ketterings, Q. M., Bigham, J. M. & Laperche, V. Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. Soil Sci. Soc. Am. J. 64, 1108–1117 (2000).

    Article  CAS  Google Scholar 

  63. Pulley, S., Lagesse, J. & Ellery, W. The mineral magnetic signatures of fire in the Kromrivier wetland, South Africa. J. Soils Sed. 17, 1170–1181 (2017).

    Article  CAS  Google Scholar 

  64. Walden, J., Oldfield, F. & Smith, J. P. (eds) Environmental Magnetism: a Practical Guide (Quaternary Research Association, 1999).

  65. Worm, H. U. On the superparamagnetic–stable single domain transition for magnetite, and frequency dependence of susceptibility. Geophys. J. Int. 133, 201–206 (1988).

    Article  Google Scholar 

  66. Blundell, A. et al. Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales. Earth Sci. Rev. 95, 158–188 (2009).

    Article  Google Scholar 

  67. Snape, L. & Church, M. J. in Wild Things 2.0: Further Advances in Palaeolithic and Mesolithic Research (eds Walker, J. & Clinnick, D.) 55–80 (Oxbow Books, 2019).

  68. Karp, A. T. et al. Fire distinguishers: refined interpretations of polycyclic aromatic hydrocarbons for paleo-applications. Geochim. Cosmochim. Acta 289, 93–113 (2020).

    Article  CAS  Google Scholar 

  69. Song, Y. et al. Distribution of pyrolytic PAHs across the Triassic–Jurassic boundary in the Sichuan Basin, southwestern China: evidence of wildfire outside the Central Atlantic Magmatic Province. Earth Sci. Rev. 201, 102970 (2020).

    Article  CAS  Google Scholar 

  70. Hytönen, K. et al. Gas–particle distribution of PAHs in wood combustion emission determined with annular denuders, filter, and polyurethane foam adsorbent. Aerosol Sci. Tech. 43, 442–454 (2009).

    Article  Google Scholar 

  71. McDonald, J. D. et al. Fine particle and gaseous emission rates from residential wood combustion. Environ. Sci. Tech. 34, 2080–2091 (2000).

    Article  CAS  Google Scholar 

  72. Hoare, S. Assessing the function of Palaeolithic hearths: experiments on intensity of luminosity and radiative heat outputs from different fuel sources. J. Paleol. Archaeol. 3, 537–565 (2020).

    Article  Google Scholar 

  73. Argiriadis, E. et al. Lake sediment fecal and biomass burning biomarkers provide direct evidence for prehistoric human-lit fires in New Zealand. Sci. Rep. 8, 12113 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Campos, I. & Abrantes, N. Forest fires as drivers of contamination of polycyclic aromatic hydrocarbons to the terrestrial and aquatic ecosystems. Curr. Opin. Environ. Sci. Health 24, 100293 (2021).

    Google Scholar 

  75. Sojinu, O. S., Sonibare, O. O. & Zeng, E. Y. Concentrations of polycyclic aromatic hydrocarbons in soils of a mangrove forest affected by forest fire. Toxicolog. Environ. Chem. 93, 450–461 (2011).

    Article  CAS  Google Scholar 

  76. Yunker, M. B. et al. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 33, 489–515 (2002).

    Article  CAS  Google Scholar 

  77. Faboya, O. L. et al. Impact of forest fires on polycyclic aromatic hydrocarbon concentrations and stable carbon isotope compositions in burnt soils from tropical forest, Nigeria. Sci. Afr. 8, e00331 (2020).

    CAS  Google Scholar 

  78. Weiner, S. Microarchaeology-Beyond the Visible Archaeological Record (Cambridge Univ. Press, 2010).

  79. Madejova, J. & Komadel, P. Baseline studies of the Clay Mineral Society source clays: infrared methods. Clays Clay Min. 49, 410–432 (2001).

    Article  CAS  Google Scholar 

  80. Berna, F. et al. Sediments exposed to high temperatures: reconstructing pyrotechnological processes in Late Bronze and Iron Age strata at Tel dor (Israel). J. Archaeol. Sci. 34, 358–373 (2007).

    Article  Google Scholar 

  81. Saikia, B. J. & Parthasarathy, G. Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 1, 206–210 (2010).

    Article  CAS  Google Scholar 

  82. Bridgland, D. R. Clast Lithological Analysis. Technical Guide No. 3 (Quaternary Research Association, 1986).

  83. Gale, S. J. & Hoare, P. G. Quaternary Sediments: Petrographic Methods for the Study of Unlithified Rocks (Blackburn, 2011).

Download references

Acknowledgements

We would like to thank M. Stahlschmidt for the analysis and interpretation of initial work on the micromorphology and invaluable assistance to S.H. on the additional thin sections. We are grateful to C. Jeans and W. Lord for discussions on the pyrite. We also thank C. Williams for help with the illustrations. Access to the site on the Euston Estate has been provided by the Duke of Grafton and the Heading family, and we are grateful to M. Hawthorne, D. Heading, E. Heading and R. Heading for their ready assistance throughout the fieldwork. Further logistical support has been provided by D. Switzer of PR International. We thank the excavation and post-excavation teams, in particular L. Dale, X. Ding, S. Hunter, D. Jones, I. Klipsch, M. Özturan, A. Rawlinson and I. Taylor, and site manager T. B. Jones. The research was supported by the Calleva Foundation through the Pathways to Ancient Britain project and for S.M.B. through the Human Prehistoric Behaviour in 3D project, and the paper is a contribution to the Natural History Museum’s Evolution of Life research theme.

Author information

Authors and Affiliations

Authors

Contributions

R.D., N.A., S.M.B., M.H., S.H., S.G.L., J.M., J.N., S.O.’C., S.A.P., A.S. and C.S. wrote the paper. R.D., N.A. and C.L. analysed the artefacts. M.L. and S.P. were responsible for palynology. S.H. performed micromorphology and environmental magnetism experiments, and analysed PAHs. M.H. performed FTIR spectroscopy. S.M.B., J.N., S.A.P. and A.S. analysed pyrites. S.G.L. and N.A. performed lithological analyses. J.M. performed photogrammetry and photography.

Corresponding author

Correspondence to Nick Ashton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Susan Mentzer, Ségolène Vandevelde and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Geology of Barnham.

a. Map of the Breckland area showing sites of Barnham, Beeches Pit and Devereux’s Pit. Also shown is the boundary of the Lower and Middle Chalk and key superficial deposits discussed in the text. b. Schematic cross-section of the sedimentary sequence at East Farm Barnham, showing locations of samples for dating, biostratigraphy, palynology and contexts containing archaeology. Units 1–3 = glacial sediments; unit 4 = lag gravel; unit 5 = lacustrine sediments with lateral transition between unit 5c in the middle of the basin and unit 5e on the edge; unit 6 = palaeosol; unit 7 = brickearth. Credits: Panel a contains public sector information licensed under the Open Government Licence v.3.0 (British Geological Survey UKRI, 2025). Panel b created by C. Williams.

Extended Data Fig. 2 Heat shattered handaxes from Barnham.

a. Central part of heat-shattered handaxe with 25 refitting pieces excavated from within a small zone (35 cm across) in Area I East. b. Top part of heat-shattered handaxe from Area I East. c. Heat-altered handaxe from Area I East.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, R., Hatch, M., Hoare, S. et al. Earliest evidence of making fire. Nature (2025). https://doi.org/10.1038/s41586-025-09855-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41586-025-09855-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing