| /* |
| * xxHash - Extremely Fast Hash algorithm |
| * Development source file for `xxh3` |
| * Copyright (C) 2019-2020 Yann Collet |
| * |
| * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php) |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following disclaimer |
| * in the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * You can contact the author at: |
| * - xxHash homepage: https://www.xxhash.com |
| * - xxHash source repository: https://github.com/Cyan4973/xxHash |
| */ |
| |
| /* |
| * Note: This file is separated for development purposes. |
| * It will be integrated into `xxhash.h` when development stage is completed. |
| * |
| * Credit: most of the work on vectorial and asm variants comes from @easyaspi314 |
| */ |
| |
| #ifndef XXH3_H_1397135465 |
| #define XXH3_H_1397135465 |
| |
| /* === Dependencies === */ |
| #ifndef XXHASH_H_5627135585666179 |
| /* special: when including `xxh3.h` directly, turn on XXH_INLINE_ALL */ |
| # undef XXH_INLINE_ALL /* avoid redefinition */ |
| # define XXH_INLINE_ALL |
| #endif |
| #include "xxhash.h" |
| |
| |
| /* === Compiler specifics === */ |
| |
| #if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* >= C99 */ |
| # define XXH_RESTRICT restrict |
| #else |
| /* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */ |
| # define XXH_RESTRICT /* disable */ |
| #endif |
| |
| #if (defined(__GNUC__) && (__GNUC__ >= 3)) \ |
| || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \ |
| || defined(__clang__) |
| # define XXH_likely(x) __builtin_expect(x, 1) |
| # define XXH_unlikely(x) __builtin_expect(x, 0) |
| #else |
| # define XXH_likely(x) (x) |
| # define XXH_unlikely(x) (x) |
| #endif |
| |
| #if defined(__GNUC__) |
| # if defined(__AVX2__) |
| # include <immintrin.h> |
| # elif defined(__SSE2__) |
| # include <emmintrin.h> |
| # elif defined(__ARM_NEON__) || defined(__ARM_NEON) |
| # define inline __inline__ /* clang bug */ |
| # include <arm_neon.h> |
| # undef inline |
| # endif |
| #elif defined(_MSC_VER) |
| # include <intrin.h> |
| #endif |
| |
| /* |
| * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while |
| * remaining a true 64-bit/128-bit hash function. |
| * |
| * This is done by prioritizing a subset of 64-bit operations that can be |
| * emulated without too many steps on the average 32-bit machine. |
| * |
| * For example, these two lines seem similar, and run equally fast on 64-bit: |
| * |
| * xxh_u64 x; |
| * x ^= (x >> 47); // good |
| * x ^= (x >> 13); // bad |
| * |
| * However, to a 32-bit machine, there is a major difference. |
| * |
| * x ^= (x >> 47) looks like this: |
| * |
| * x.lo ^= (x.hi >> (47 - 32)); |
| * |
| * while x ^= (x >> 13) looks like this: |
| * |
| * // note: funnel shifts are not usually cheap. |
| * x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13)); |
| * x.hi ^= (x.hi >> 13); |
| * |
| * The first one is significantly faster than the second, simply because the |
| * shift is larger than 32. This means: |
| * - All the bits we need are in the upper 32 bits, so we can ignore the lower |
| * 32 bits in the shift. |
| * - The shift result will always fit in the lower 32 bits, and therefore, |
| * we can ignore the upper 32 bits in the xor. |
| * |
| * Thanks to this optimization, XXH3 only requires these features to be efficient: |
| * |
| * - Usable unaligned access |
| * - A 32-bit or 64-bit ALU |
| * - If 32-bit, a decent ADC instruction |
| * - A 32 or 64-bit multiply with a 64-bit result |
| * - For the 128-bit variant, a decent byteswap helps short inputs. |
| * |
| * The first two are already required by XXH32, and almost all 32-bit and 64-bit |
| * platforms which can run XXH32 can run XXH3 efficiently. |
| * |
| * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one |
| * notable exception. |
| * |
| * First of all, Thumb-1 lacks support for the UMULL instruction which |
| * performs the important long multiply. This means numerous __aeabi_lmul |
| * calls. |
| * |
| * Second of all, the 8 functional registers are just not enough. |
| * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need |
| * Lo registers, and this shuffling results in thousands more MOVs than A32. |
| * |
| * A32 and T32 don't have this limitation. They can access all 14 registers, |
| * do a 32->64 multiply with UMULL, and the flexible operand allowing free |
| * shifts is helpful, too. |
| * |
| * Therefore, we do a quick sanity check. |
| * |
| * If compiling Thumb-1 for a target which supports ARM instructions, we will |
| * emit a warning, as it is not a "sane" platform to compile for. |
| * |
| * Usually, if this happens, it is because of an accident and you probably need |
| * to specify -march, as you likely meant to compile for a newer architecture. |
| */ |
| #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM) |
| # warning "XXH3 is highly inefficient without ARM or Thumb-2." |
| #endif |
| |
| /* ========================================== |
| * Vectorization detection |
| * ========================================== */ |
| #define XXH_SCALAR 0 /* Portable scalar version */ |
| #define XXH_SSE2 1 /* SSE2 for Pentium 4 and all x86_64 */ |
| #define XXH_AVX2 2 /* AVX2 for Haswell and Bulldozer */ |
| #define XXH_AVX512 3 /* AVX512 for Skylake and Icelake */ |
| #define XXH_NEON 4 /* NEON for most ARMv7-A and all AArch64 */ |
| #define XXH_VSX 5 /* VSX and ZVector for POWER8/z13 */ |
| |
| #ifndef XXH_VECTOR /* can be defined on command line */ |
| # if defined(__AVX512F__) |
| # define XXH_VECTOR XXH_AVX512 |
| # elif defined(__AVX2__) |
| # define XXH_VECTOR XXH_AVX2 |
| # elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2)) |
| # define XXH_VECTOR XXH_SSE2 |
| # elif defined(__GNUC__) /* msvc support maybe later */ \ |
| && (defined(__ARM_NEON__) || defined(__ARM_NEON)) \ |
| && (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \ |
| || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) |
| # define XXH_VECTOR XXH_NEON |
| # elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \ |
| || (defined(__s390x__) && defined(__VEC__)) \ |
| && defined(__GNUC__) /* TODO: IBM XL */ |
| # define XXH_VECTOR XXH_VSX |
| # else |
| # define XXH_VECTOR XXH_SCALAR |
| # endif |
| #endif |
| |
| /* |
| * Controls the alignment of the accumulator, |
| * for compatibility with aligned vector loads, which are usually faster. |
| */ |
| #ifndef XXH_ACC_ALIGN |
| # if defined(XXH_X86DISPATCH) |
| # define XXH_ACC_ALIGN 64 /* for compatibility with avx512 */ |
| # elif XXH_VECTOR == XXH_SCALAR /* scalar */ |
| # define XXH_ACC_ALIGN 8 |
| # elif XXH_VECTOR == XXH_SSE2 /* sse2 */ |
| # define XXH_ACC_ALIGN 16 |
| # elif XXH_VECTOR == XXH_AVX2 /* avx2 */ |
| # define XXH_ACC_ALIGN 32 |
| # elif XXH_VECTOR == XXH_NEON /* neon */ |
| # define XXH_ACC_ALIGN 16 |
| # elif XXH_VECTOR == XXH_VSX /* vsx */ |
| # define XXH_ACC_ALIGN 16 |
| # elif XXH_VECTOR == XXH_AVX512 /* avx512 */ |
| # define XXH_ACC_ALIGN 64 |
| # endif |
| #endif |
| |
| #if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \ |
| || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512 |
| # define XXH_SEC_ALIGN XXH_ACC_ALIGN |
| #else |
| # define XXH_SEC_ALIGN 8 |
| #endif |
| |
| /* |
| * UGLY HACK: |
| * GCC usually generates the best code with -O3 for xxHash. |
| * |
| * However, when targeting AVX2, it is overzealous in its unrolling resulting |
| * in code roughly 3/4 the speed of Clang. |
| * |
| * There are other issues, such as GCC splitting _mm256_loadu_si256 into |
| * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which |
| * only applies to Sandy and Ivy Bridge... which don't even support AVX2. |
| * |
| * That is why when compiling the AVX2 version, it is recommended to use either |
| * -O2 -mavx2 -march=haswell |
| * or |
| * -O2 -mavx2 -mno-avx256-split-unaligned-load |
| * for decent performance, or to use Clang instead. |
| * |
| * Fortunately, we can control the first one with a pragma that forces GCC into |
| * -O2, but the other one we can't control without "failed to inline always |
| * inline function due to target mismatch" warnings. |
| */ |
| #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ |
| && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
| && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ |
| # pragma GCC push_options |
| # pragma GCC optimize("-O2") |
| #endif |
| |
| |
| #if XXH_VECTOR == XXH_NEON |
| /* |
| * NEON's setup for vmlal_u32 is a little more complicated than it is on |
| * SSE2, AVX2, and VSX. |
| * |
| * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast. |
| * |
| * To do the same operation, the 128-bit 'Q' register needs to be split into |
| * two 64-bit 'D' registers, performing this operation:: |
| * |
| * [ a | b ] |
| * | '---------. .--------' | |
| * | x | |
| * | .---------' '--------. | |
| * [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[ a >> 32 | b >> 32 ] |
| * |
| * Due to significant changes in aarch64, the fastest method for aarch64 is |
| * completely different than the fastest method for ARMv7-A. |
| * |
| * ARMv7-A treats D registers as unions overlaying Q registers, so modifying |
| * D11 will modify the high half of Q5. This is similar to how modifying AH |
| * will only affect bits 8-15 of AX on x86. |
| * |
| * VZIP takes two registers, and puts even lanes in one register and odd lanes |
| * in the other. |
| * |
| * On ARMv7-A, this strangely modifies both parameters in place instead of |
| * taking the usual 3-operand form. |
| * |
| * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the |
| * lower and upper halves of the Q register to end up with the high and low |
| * halves where we want - all in one instruction. |
| * |
| * vzip.32 d10, d11 @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] } |
| * |
| * Unfortunately we need inline assembly for this: Instructions modifying two |
| * registers at once is not possible in GCC or Clang's IR, and they have to |
| * create a copy. |
| * |
| * aarch64 requires a different approach. |
| * |
| * In order to make it easier to write a decent compiler for aarch64, many |
| * quirks were removed, such as conditional execution. |
| * |
| * NEON was also affected by this. |
| * |
| * aarch64 cannot access the high bits of a Q-form register, and writes to a |
| * D-form register zero the high bits, similar to how writes to W-form scalar |
| * registers (or DWORD registers on x86_64) work. |
| * |
| * The formerly free vget_high intrinsics now require a vext (with a few |
| * exceptions) |
| * |
| * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent |
| * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one |
| * operand. |
| * |
| * The equivalent of the VZIP.32 on the lower and upper halves would be this |
| * mess: |
| * |
| * ext v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] } |
| * zip1 v1.2s, v0.2s, v2.2s // v1 = { v0[0], v2[0] } |
| * zip2 v0.2s, v0.2s, v1.2s // v0 = { v0[1], v2[1] } |
| * |
| * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN): |
| * |
| * shrn v1.2s, v0.2d, #32 // v1 = (uint32x2_t)(v0 >> 32); |
| * xtn v0.2s, v0.2d // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF); |
| * |
| * This is available on ARMv7-A, but is less efficient than a single VZIP.32. |
| */ |
| |
| /* |
| * Function-like macro: |
| * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi) |
| * { |
| * outLo = (uint32x2_t)(in & 0xFFFFFFFF); |
| * outHi = (uint32x2_t)(in >> 32); |
| * in = UNDEFINED; |
| * } |
| */ |
| # if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \ |
| && defined(__GNUC__) \ |
| && !defined(__aarch64__) && !defined(__arm64__) |
| # define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ |
| do { \ |
| /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \ |
| /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */ \ |
| /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \ |
| __asm__("vzip.32 %e0, %f0" : "+w" (in)); \ |
| (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in)); \ |
| (outHi) = vget_high_u32(vreinterpretq_u32_u64(in)); \ |
| } while (0) |
| # else |
| # define XXH_SPLIT_IN_PLACE(in, outLo, outHi) \ |
| do { \ |
| (outLo) = vmovn_u64 (in); \ |
| (outHi) = vshrn_n_u64 ((in), 32); \ |
| } while (0) |
| # endif |
| #endif /* XXH_VECTOR == XXH_NEON */ |
| |
| /* |
| * VSX and Z Vector helpers. |
| * |
| * This is very messy, and any pull requests to clean this up are welcome. |
| * |
| * There are a lot of problems with supporting VSX and s390x, due to |
| * inconsistent intrinsics, spotty coverage, and multiple endiannesses. |
| */ |
| #if XXH_VECTOR == XXH_VSX |
| # if defined(__s390x__) |
| # include <s390intrin.h> |
| # else |
| # include <altivec.h> |
| # endif |
| |
| # undef vector /* Undo the pollution */ |
| |
| typedef __vector unsigned long long xxh_u64x2; |
| typedef __vector unsigned char xxh_u8x16; |
| typedef __vector unsigned xxh_u32x4; |
| |
| # ifndef XXH_VSX_BE |
| # if defined(__BIG_ENDIAN__) \ |
| || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
| # define XXH_VSX_BE 1 |
| # elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__ |
| # warning "-maltivec=be is not recommended. Please use native endianness." |
| # define XXH_VSX_BE 1 |
| # else |
| # define XXH_VSX_BE 0 |
| # endif |
| # endif /* !defined(XXH_VSX_BE) */ |
| |
| # if XXH_VSX_BE |
| /* A wrapper for POWER9's vec_revb. */ |
| # if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__)) |
| # define XXH_vec_revb vec_revb |
| # else |
| XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val) |
| { |
| xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, |
| 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; |
| return vec_perm(val, val, vByteSwap); |
| } |
| # endif |
| # endif /* XXH_VSX_BE */ |
| |
| /* |
| * Performs an unaligned load and byte swaps it on big endian. |
| */ |
| XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr) |
| { |
| xxh_u64x2 ret; |
| memcpy(&ret, ptr, sizeof(xxh_u64x2)); |
| # if XXH_VSX_BE |
| ret = XXH_vec_revb(ret); |
| # endif |
| return ret; |
| } |
| |
| /* |
| * vec_mulo and vec_mule are very problematic intrinsics on PowerPC |
| * |
| * These intrinsics weren't added until GCC 8, despite existing for a while, |
| * and they are endian dependent. Also, their meaning swap depending on version. |
| * */ |
| # if defined(__s390x__) |
| /* s390x is always big endian, no issue on this platform */ |
| # define XXH_vec_mulo vec_mulo |
| # define XXH_vec_mule vec_mule |
| # elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw) |
| /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */ |
| # define XXH_vec_mulo __builtin_altivec_vmulouw |
| # define XXH_vec_mule __builtin_altivec_vmuleuw |
| # else |
| /* gcc needs inline assembly */ |
| /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */ |
| XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b) |
| { |
| xxh_u64x2 result; |
| __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); |
| return result; |
| } |
| XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b) |
| { |
| xxh_u64x2 result; |
| __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b)); |
| return result; |
| } |
| # endif /* XXH_vec_mulo, XXH_vec_mule */ |
| #endif /* XXH_VECTOR == XXH_VSX */ |
| |
| |
| /* prefetch |
| * can be disabled, by declaring XXH_NO_PREFETCH build macro */ |
| #if defined(XXH_NO_PREFETCH) |
| # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ |
| #else |
| # if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) /* _mm_prefetch() is not defined outside of x86/x64 */ |
| # include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */ |
| # define XXH_PREFETCH(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0) |
| # elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) ) |
| # define XXH_PREFETCH(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */) |
| # else |
| # define XXH_PREFETCH(ptr) (void)(ptr) /* disabled */ |
| # endif |
| #endif /* XXH_NO_PREFETCH */ |
| |
| |
| /* ========================================== |
| * XXH3 default settings |
| * ========================================== */ |
| |
| #define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */ |
| |
| #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN) |
| # error "default keyset is not large enough" |
| #endif |
| |
| /* Pseudorandom secret taken directly from FARSH */ |
| XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = { |
| 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, |
| 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, |
| 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, |
| 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, |
| 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, |
| 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, |
| 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, |
| 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, |
| 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, |
| 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, |
| 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, |
| 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, |
| }; |
| |
| |
| #ifdef XXH_OLD_NAMES |
| # define kSecret XXH3_kSecret |
| #endif |
| |
| /* |
| * Calculates a 32-bit to 64-bit long multiply. |
| * |
| * Wraps __emulu on MSVC x86 because it tends to call __allmul when it doesn't |
| * need to (but it shouldn't need to anyways, it is about 7 instructions to do |
| * a 64x64 multiply...). Since we know that this will _always_ emit MULL, we |
| * use that instead of the normal method. |
| * |
| * If you are compiling for platforms like Thumb-1 and don't have a better option, |
| * you may also want to write your own long multiply routine here. |
| * |
| * XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y) |
| * { |
| * return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF); |
| * } |
| */ |
| #if defined(_MSC_VER) && defined(_M_IX86) |
| # include <intrin.h> |
| # define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y)) |
| #else |
| /* |
| * Downcast + upcast is usually better than masking on older compilers like |
| * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers. |
| * |
| * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands |
| * and perform a full 64x64 multiply -- entirely redundant on 32-bit. |
| */ |
| # define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y)) |
| #endif |
| |
| /* |
| * Calculates a 64->128-bit long multiply. |
| * |
| * Uses __uint128_t and _umul128 if available, otherwise uses a scalar version. |
| */ |
| static XXH128_hash_t |
| XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs) |
| { |
| /* |
| * GCC/Clang __uint128_t method. |
| * |
| * On most 64-bit targets, GCC and Clang define a __uint128_t type. |
| * This is usually the best way as it usually uses a native long 64-bit |
| * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64. |
| * |
| * Usually. |
| * |
| * Despite being a 32-bit platform, Clang (and emscripten) define this type |
| * despite not having the arithmetic for it. This results in a laggy |
| * compiler builtin call which calculates a full 128-bit multiply. |
| * In that case it is best to use the portable one. |
| * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677 |
| */ |
| #if defined(__GNUC__) && !defined(__wasm__) \ |
| && defined(__SIZEOF_INT128__) \ |
| || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128) |
| |
| __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs; |
| XXH128_hash_t r128; |
| r128.low64 = (xxh_u64)(product); |
| r128.high64 = (xxh_u64)(product >> 64); |
| return r128; |
| |
| /* |
| * MSVC for x64's _umul128 method. |
| * |
| * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct); |
| * |
| * This compiles to single operand MUL on x64. |
| */ |
| #elif defined(_M_X64) || defined(_M_IA64) |
| |
| #ifndef _MSC_VER |
| # pragma intrinsic(_umul128) |
| #endif |
| xxh_u64 product_high; |
| xxh_u64 const product_low = _umul128(lhs, rhs, &product_high); |
| XXH128_hash_t r128; |
| r128.low64 = product_low; |
| r128.high64 = product_high; |
| return r128; |
| |
| #else |
| /* |
| * Portable scalar method. Optimized for 32-bit and 64-bit ALUs. |
| * |
| * This is a fast and simple grade school multiply, which is shown below |
| * with base 10 arithmetic instead of base 0x100000000. |
| * |
| * 9 3 // D2 lhs = 93 |
| * x 7 5 // D2 rhs = 75 |
| * ---------- |
| * 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15 |
| * 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45 |
| * 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21 |
| * + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63 |
| * --------- |
| * 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27 |
| * + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67 |
| * --------- |
| * 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975 |
| * |
| * The reasons for adding the products like this are: |
| * 1. It avoids manual carry tracking. Just like how |
| * (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX. |
| * This avoids a lot of complexity. |
| * |
| * 2. It hints for, and on Clang, compiles to, the powerful UMAAL |
| * instruction available in ARM's Digital Signal Processing extension |
| * in 32-bit ARMv6 and later, which is shown below: |
| * |
| * void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm) |
| * { |
| * xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm; |
| * *RdLo = (xxh_u32)(product & 0xFFFFFFFF); |
| * *RdHi = (xxh_u32)(product >> 32); |
| * } |
| * |
| * This instruction was designed for efficient long multiplication, and |
| * allows this to be calculated in only 4 instructions at speeds |
| * comparable to some 64-bit ALUs. |
| * |
| * 3. It isn't terrible on other platforms. Usually this will be a couple |
| * of 32-bit ADD/ADCs. |
| */ |
| |
| /* First calculate all of the cross products. */ |
| xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF); |
| xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF); |
| xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32); |
| xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32); |
| |
| /* Now add the products together. These will never overflow. */ |
| xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi; |
| xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi; |
| xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF); |
| |
| XXH128_hash_t r128; |
| r128.low64 = lower; |
| r128.high64 = upper; |
| return r128; |
| #endif |
| } |
| |
| /* |
| * Does a 64-bit to 128-bit multiply, then XOR folds it. |
| * |
| * The reason for the separate function is to prevent passing too many structs |
| * around by value. This will hopefully inline the multiply, but we don't force it. |
| */ |
| static xxh_u64 |
| XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs) |
| { |
| XXH128_hash_t product = XXH_mult64to128(lhs, rhs); |
| return product.low64 ^ product.high64; |
| } |
| |
| /* Seems to produce slightly better code on GCC for some reason. */ |
| XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift) |
| { |
| XXH_ASSERT(0 <= shift && shift < 64); |
| return v64 ^ (v64 >> shift); |
| } |
| |
| /* |
| * This is a fast avalanche stage, |
| * suitable when input bits are already partially mixed |
| */ |
| static XXH64_hash_t XXH3_avalanche(xxh_u64 h64) |
| { |
| h64 = XXH_xorshift64(h64, 37); |
| h64 *= 0x165667919E3779F9ULL; |
| h64 = XXH_xorshift64(h64, 32); |
| return h64; |
| } |
| |
| /* |
| * This is a stronger avalanche, |
| * inspired by Pelle Evensen's rrmxmx |
| * preferable when input has not been previously mixed |
| */ |
| static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len) |
| { |
| /* this mix is inspired by Pelle Evensen's rrmxmx */ |
| h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24); |
| h64 *= 0x9FB21C651E98DF25ULL; |
| h64 ^= (h64 >> 35) + len ; |
| h64 *= 0x9FB21C651E98DF25ULL; |
| return XXH_xorshift64(h64, 28); |
| } |
| |
| |
| /* ========================================== |
| * Short keys |
| * ========================================== |
| * One of the shortcomings of XXH32 and XXH64 was that their performance was |
| * sub-optimal on short lengths. It used an iterative algorithm which strongly |
| * favored lengths that were a multiple of 4 or 8. |
| * |
| * Instead of iterating over individual inputs, we use a set of single shot |
| * functions which piece together a range of lengths and operate in constant time. |
| * |
| * Additionally, the number of multiplies has been significantly reduced. This |
| * reduces latency, especially when emulating 64-bit multiplies on 32-bit. |
| * |
| * Depending on the platform, this may or may not be faster than XXH32, but it |
| * is almost guaranteed to be faster than XXH64. |
| */ |
| |
| /* |
| * At very short lengths, there isn't enough input to fully hide secrets, or use |
| * the entire secret. |
| * |
| * There is also only a limited amount of mixing we can do before significantly |
| * impacting performance. |
| * |
| * Therefore, we use different sections of the secret and always mix two secret |
| * samples with an XOR. This should have no effect on performance on the |
| * seedless or withSeed variants because everything _should_ be constant folded |
| * by modern compilers. |
| * |
| * The XOR mixing hides individual parts of the secret and increases entropy. |
| * |
| * This adds an extra layer of strength for custom secrets. |
| */ |
| XXH_FORCE_INLINE XXH64_hash_t |
| XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| { |
| XXH_ASSERT(input != NULL); |
| XXH_ASSERT(1 <= len && len <= 3); |
| XXH_ASSERT(secret != NULL); |
| /* |
| * len = 1: combined = { input[0], 0x01, input[0], input[0] } |
| * len = 2: combined = { input[1], 0x02, input[0], input[1] } |
| * len = 3: combined = { input[2], 0x03, input[0], input[1] } |
| */ |
| { xxh_u8 const c1 = input[0]; |
| xxh_u8 const c2 = input[len >> 1]; |
| xxh_u8 const c3 = input[len - 1]; |
| xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2 << 24) |
| | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); |
| xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; |
| xxh_u64 const keyed = (xxh_u64)combined ^ bitflip; |
| return XXH64_avalanche(keyed); |
| } |
| } |
| |
| XXH_FORCE_INLINE XXH64_hash_t |
| XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| { |
| XXH_ASSERT(input != NULL); |
| XXH_ASSERT(secret != NULL); |
| XXH_ASSERT(4 <= len && len < 8); |
| seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; |
| { xxh_u32 const input1 = XXH_readLE32(input); |
| xxh_u32 const input2 = XXH_readLE32(input + len - 4); |
| xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed; |
| xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32); |
| xxh_u64 const keyed = input64 ^ bitflip; |
| return XXH3_rrmxmx(keyed, len); |
| } |
| } |
| |
| XXH_FORCE_INLINE XXH64_hash_t |
| XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| { |
| XXH_ASSERT(input != NULL); |
| XXH_ASSERT(secret != NULL); |
| XXH_ASSERT(8 <= len && len <= 16); |
| { xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed; |
| xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed; |
| xxh_u64 const input_lo = XXH_readLE64(input) ^ bitflip1; |
| xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2; |
| xxh_u64 const acc = len |
| + XXH_swap64(input_lo) + input_hi |
| + XXH3_mul128_fold64(input_lo, input_hi); |
| return XXH3_avalanche(acc); |
| } |
| } |
| |
| XXH_FORCE_INLINE XXH64_hash_t |
| XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| { |
| XXH_ASSERT(len <= 16); |
| { if (XXH_likely(len > 8)) return XXH3_len_9to16_64b(input, len, secret, seed); |
| if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed); |
| if (len) return XXH3_len_1to3_64b(input, len, secret, seed); |
| return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64))); |
| } |
| } |
| |
| /* |
| * DISCLAIMER: There are known *seed-dependent* multicollisions here due to |
| * multiplication by zero, affecting hashes of lengths 17 to 240. |
| * |
| * However, they are very unlikely. |
| * |
| * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all |
| * unseeded non-cryptographic hashes, it does not attempt to defend itself |
| * against specially crafted inputs, only random inputs. |
| * |
| * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes |
| * cancelling out the secret is taken an arbitrary number of times (addressed |
| * in XXH3_accumulate_512), this collision is very unlikely with random inputs |
| * and/or proper seeding: |
| * |
| * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a |
| * function that is only called up to 16 times per hash with up to 240 bytes of |
| * input. |
| * |
| * This is not too bad for a non-cryptographic hash function, especially with |
| * only 64 bit outputs. |
| * |
| * The 128-bit variant (which trades some speed for strength) is NOT affected |
| * by this, although it is always a good idea to use a proper seed if you care |
| * about strength. |
| */ |
| XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input, |
| const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64) |
| { |
| #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
| && defined(__i386__) && defined(__SSE2__) /* x86 + SSE2 */ \ |
| && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable like XXH32 hack */ |
| /* |
| * UGLY HACK: |
| * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in |
| * slower code. |
| * |
| * By forcing seed64 into a register, we disrupt the cost model and |
| * cause it to scalarize. See `XXH32_round()` |
| * |
| * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600, |
| * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on |
| * GCC 9.2, despite both emitting scalar code. |
| * |
| * GCC generates much better scalar code than Clang for the rest of XXH3, |
| * which is why finding a more optimal codepath is an interest. |
| */ |
| __asm__ ("" : "+r" (seed64)); |
| #endif |
| { xxh_u64 const input_lo = XXH_readLE64(input); |
| xxh_u64 const input_hi = XXH_readLE64(input+8); |
| return XXH3_mul128_fold64( |
| input_lo ^ (XXH_readLE64(secret) + seed64), |
| input_hi ^ (XXH_readLE64(secret+8) - seed64) |
| ); |
| } |
| } |
| |
| /* For mid range keys, XXH3 uses a Mum-hash variant. */ |
| XXH_FORCE_INLINE XXH64_hash_t |
| XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len, |
| const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| XXH64_hash_t seed) |
| { |
| XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
| XXH_ASSERT(16 < len && len <= 128); |
| |
| { xxh_u64 acc = len * XXH_PRIME64_1; |
| if (len > 32) { |
| if (len > 64) { |
| if (len > 96) { |
| acc += XXH3_mix16B(input+48, secret+96, seed); |
| acc += XXH3_mix16B(input+len-64, secret+112, seed); |
| } |
| acc += XXH3_mix16B(input+32, secret+64, seed); |
| acc += XXH3_mix16B(input+len-48, secret+80, seed); |
| } |
| acc += XXH3_mix16B(input+16, secret+32, seed); |
| acc += XXH3_mix16B(input+len-32, secret+48, seed); |
| } |
| acc += XXH3_mix16B(input+0, secret+0, seed); |
| acc += XXH3_mix16B(input+len-16, secret+16, seed); |
| |
| return XXH3_avalanche(acc); |
| } |
| } |
| |
| #define XXH3_MIDSIZE_MAX 240 |
| |
| XXH_NO_INLINE XXH64_hash_t |
| XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len, |
| const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| XXH64_hash_t seed) |
| { |
| XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
| XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); |
| |
| #define XXH3_MIDSIZE_STARTOFFSET 3 |
| #define XXH3_MIDSIZE_LASTOFFSET 17 |
| |
| { xxh_u64 acc = len * XXH_PRIME64_1; |
| int const nbRounds = (int)len / 16; |
| int i; |
| for (i=0; i<8; i++) { |
| acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed); |
| } |
| acc = XXH3_avalanche(acc); |
| XXH_ASSERT(nbRounds >= 8); |
| #if defined(__clang__) /* Clang */ \ |
| && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ |
| && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ |
| /* |
| * UGLY HACK: |
| * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86. |
| * In everywhere else, it uses scalar code. |
| * |
| * For 64->128-bit multiplies, even if the NEON was 100% optimal, it |
| * would still be slower than UMAAL (see XXH_mult64to128). |
| * |
| * Unfortunately, Clang doesn't handle the long multiplies properly and |
| * converts them to the nonexistent "vmulq_u64" intrinsic, which is then |
| * scalarized into an ugly mess of VMOV.32 instructions. |
| * |
| * This mess is difficult to avoid without turning autovectorization |
| * off completely, but they are usually relatively minor and/or not |
| * worth it to fix. |
| * |
| * This loop is the easiest to fix, as unlike XXH32, this pragma |
| * _actually works_ because it is a loop vectorization instead of an |
| * SLP vectorization. |
| */ |
| #pragma clang loop vectorize(disable) |
| #endif |
| for (i=8 ; i < nbRounds; i++) { |
| acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed); |
| } |
| /* last bytes */ |
| acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed); |
| return XXH3_avalanche(acc); |
| } |
| } |
| |
| |
| /* ======= Long Keys ======= */ |
| |
| #define XXH_STRIPE_LEN 64 |
| #define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */ |
| #define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64)) |
| |
| #ifdef XXH_OLD_NAMES |
| # define STRIPE_LEN XXH_STRIPE_LEN |
| # define ACC_NB XXH_ACC_NB |
| #endif |
| |
| XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64) |
| { |
| if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64); |
| memcpy(dst, &v64, sizeof(v64)); |
| } |
| |
| /* Several intrinsic functions below are supposed to accept __int64 as argument, |
| * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ . |
| * However, several environments do not define __int64 type, |
| * requiring a workaround. |
| */ |
| #if !defined (__VMS) \ |
| && (defined (__cplusplus) \ |
| || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
| typedef int64_t xxh_i64; |
| #else |
| /* the following type must have a width of 64-bit */ |
| typedef long long xxh_i64; |
| #endif |
| |
| /* |
| * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized. |
| * |
| * It is a hardened version of UMAC, based off of FARSH's implementation. |
| * |
| * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD |
| * implementations, and it is ridiculously fast. |
| * |
| * We harden it by mixing the original input to the accumulators as well as the product. |
| * |
| * This means that in the (relatively likely) case of a multiply by zero, the |
| * original input is preserved. |
| * |
| * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve |
| * cross-pollination, as otherwise the upper and lower halves would be |
| * essentially independent. |
| * |
| * This doesn't matter on 64-bit hashes since they all get merged together in |
| * the end, so we skip the extra step. |
| * |
| * Both XXH3_64bits and XXH3_128bits use this subroutine. |
| */ |
| |
| #if (XXH_VECTOR == XXH_AVX512) || defined(XXH_X86DISPATCH) |
| |
| #ifndef XXH_TARGET_AVX512 |
| # define XXH_TARGET_AVX512 /* disable attribute target */ |
| #endif |
| |
| XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
| XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc, |
| const void* XXH_RESTRICT input, |
| const void* XXH_RESTRICT secret) |
| { |
| XXH_ALIGN(64) __m512i* const xacc = (__m512i *) acc; |
| XXH_ASSERT((((size_t)acc) & 63) == 0); |
| XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); |
| |
| { |
| /* data_vec = input[0]; */ |
| __m512i const data_vec = _mm512_loadu_si512 (input); |
| /* key_vec = secret[0]; */ |
| __m512i const key_vec = _mm512_loadu_si512 (secret); |
| /* data_key = data_vec ^ key_vec; */ |
| __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); |
| /* data_key_lo = data_key >> 32; */ |
| __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
| /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
| __m512i const product = _mm512_mul_epu32 (data_key, data_key_lo); |
| /* xacc[0] += swap(data_vec); */ |
| __m512i const data_swap = _mm512_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); |
| __m512i const sum = _mm512_add_epi64(*xacc, data_swap); |
| /* xacc[0] += product; */ |
| *xacc = _mm512_add_epi64(product, sum); |
| } |
| } |
| |
| /* |
| * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing. |
| * |
| * Multiplication isn't perfect, as explained by Google in HighwayHash: |
| * |
| * // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to |
| * // varying degrees. In descending order of goodness, bytes |
| * // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32. |
| * // As expected, the upper and lower bytes are much worse. |
| * |
| * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291 |
| * |
| * Since our algorithm uses a pseudorandom secret to add some variance into the |
| * mix, we don't need to (or want to) mix as often or as much as HighwayHash does. |
| * |
| * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid |
| * extraction. |
| * |
| * Both XXH3_64bits and XXH3_128bits use this subroutine. |
| */ |
| |
| XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
| XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
| { |
| XXH_ASSERT((((size_t)acc) & 63) == 0); |
| XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i)); |
| { XXH_ALIGN(64) __m512i* const xacc = (__m512i*) acc; |
| const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1); |
| |
| /* xacc[0] ^= (xacc[0] >> 47) */ |
| __m512i const acc_vec = *xacc; |
| __m512i const shifted = _mm512_srli_epi64 (acc_vec, 47); |
| __m512i const data_vec = _mm512_xor_si512 (acc_vec, shifted); |
| /* xacc[0] ^= secret; */ |
| __m512i const key_vec = _mm512_loadu_si512 (secret); |
| __m512i const data_key = _mm512_xor_si512 (data_vec, key_vec); |
| |
| /* xacc[0] *= XXH_PRIME32_1; */ |
| __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
| __m512i const prod_lo = _mm512_mul_epu32 (data_key, prime32); |
| __m512i const prod_hi = _mm512_mul_epu32 (data_key_hi, prime32); |
| *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32)); |
| } |
| } |
| |
| XXH_FORCE_INLINE XXH_TARGET_AVX512 void |
| XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
| { |
| XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0); |
| XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64); |
| XXH_ASSERT(((size_t)customSecret & 63) == 0); |
| (void)(&XXH_writeLE64); |
| { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i); |
| __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, -(xxh_i64)seed64); |
| |
| XXH_ALIGN(64) const __m512i* const src = (const __m512i*) XXH3_kSecret; |
| XXH_ALIGN(64) __m512i* const dest = ( __m512i*) customSecret; |
| int i; |
| for (i=0; i < nbRounds; ++i) { |
| // GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*', |
| // this will warn "discards ‘const’ qualifier". |
| union { |
| XXH_ALIGN(64) const __m512i* const cp; |
| XXH_ALIGN(64) void* const p; |
| } const remote_const_void = { .cp = src + i }; |
| dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed); |
| } } |
| } |
| |
| #endif |
| |
| #if (XXH_VECTOR == XXH_AVX2) || defined(XXH_X86DISPATCH) |
| |
| #ifndef XXH_TARGET_AVX2 |
| # define XXH_TARGET_AVX2 /* disable attribute target */ |
| #endif |
| |
| XXH_FORCE_INLINE XXH_TARGET_AVX2 void |
| XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc, |
| const void* XXH_RESTRICT input, |
| const void* XXH_RESTRICT secret) |
| { |
| XXH_ASSERT((((size_t)acc) & 31) == 0); |
| { XXH_ALIGN(32) __m256i* const xacc = (__m256i *) acc; |
| /* Unaligned. This is mainly for pointer arithmetic, and because |
| * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
| const __m256i* const xinput = (const __m256i *) input; |
| /* Unaligned. This is mainly for pointer arithmetic, and because |
| * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
| const __m256i* const xsecret = (const __m256i *) secret; |
| |
| size_t i; |
| for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { |
| /* data_vec = xinput[i]; */ |
| __m256i const data_vec = _mm256_loadu_si256 (xinput+i); |
| /* key_vec = xsecret[i]; */ |
| __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); |
| /* data_key = data_vec ^ key_vec; */ |
| __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); |
| /* data_key_lo = data_key >> 32; */ |
| __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
| /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
| __m256i const product = _mm256_mul_epu32 (data_key, data_key_lo); |
| /* xacc[i] += swap(data_vec); */ |
| __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2)); |
| __m256i const sum = _mm256_add_epi64(xacc[i], data_swap); |
| /* xacc[i] += product; */ |
| xacc[i] = _mm256_add_epi64(product, sum); |
| } } |
| } |
| |
| XXH_FORCE_INLINE XXH_TARGET_AVX2 void |
| XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
| { |
| XXH_ASSERT((((size_t)acc) & 31) == 0); |
| { XXH_ALIGN(32) __m256i* const xacc = (__m256i*) acc; |
| /* Unaligned. This is mainly for pointer arithmetic, and because |
| * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */ |
| const __m256i* const xsecret = (const __m256i *) secret; |
| const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1); |
| |
| size_t i; |
| for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) { |
| /* xacc[i] ^= (xacc[i] >> 47) */ |
| __m256i const acc_vec = xacc[i]; |
| __m256i const shifted = _mm256_srli_epi64 (acc_vec, 47); |
| __m256i const data_vec = _mm256_xor_si256 (acc_vec, shifted); |
| /* xacc[i] ^= xsecret; */ |
| __m256i const key_vec = _mm256_loadu_si256 (xsecret+i); |
| __m256i const data_key = _mm256_xor_si256 (data_vec, key_vec); |
| |
| /* xacc[i] *= XXH_PRIME32_1; */ |
| __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
| __m256i const prod_lo = _mm256_mul_epu32 (data_key, prime32); |
| __m256i const prod_hi = _mm256_mul_epu32 (data_key_hi, prime32); |
| xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32)); |
| } |
| } |
| } |
| |
| XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
| { |
| XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0); |
| XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6); |
| XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64); |
| (void)(&XXH_writeLE64); |
| XXH_PREFETCH(customSecret); |
| { __m256i const seed = _mm256_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64, -(xxh_i64)seed64, (xxh_i64)seed64); |
| |
| XXH_ALIGN(64) const __m256i* const src = (const __m256i*) XXH3_kSecret; |
| XXH_ALIGN(64) __m256i* dest = ( __m256i*) customSecret; |
| |
| # if defined(__GNUC__) || defined(__clang__) |
| /* |
| * On GCC & Clang, marking 'dest' as modified will cause the compiler: |
| * - do not extract the secret from sse registers in the internal loop |
| * - use less common registers, and avoid pushing these reg into stack |
| * The asm hack causes Clang to assume that XXH3_kSecretPtr aliases with |
| * customSecret, and on aarch64, this prevented LDP from merging two |
| * loads together for free. Putting the loads together before the stores |
| * properly generates LDP. |
| */ |
| __asm__("" : "+r" (dest)); |
| # endif |
| |
| /* GCC -O2 need unroll loop manually */ |
| dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed); |
| dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed); |
| dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed); |
| dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed); |
| dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed); |
| dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed); |
| } |
| } |
| |
| #endif |
| |
| #if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH) |
| |
| #ifndef XXH_TARGET_SSE2 |
| # define XXH_TARGET_SSE2 /* disable attribute target */ |
| #endif |
| |
| XXH_FORCE_INLINE XXH_TARGET_SSE2 void |
| XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc, |
| const void* XXH_RESTRICT input, |
| const void* XXH_RESTRICT secret) |
| { |
| /* SSE2 is just a half-scale version of the AVX2 version. */ |
| XXH_ASSERT((((size_t)acc) & 15) == 0); |
| { XXH_ALIGN(16) __m128i* const xacc = (__m128i *) acc; |
| /* Unaligned. This is mainly for pointer arithmetic, and because |
| * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
| const __m128i* const xinput = (const __m128i *) input; |
| /* Unaligned. This is mainly for pointer arithmetic, and because |
| * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
| const __m128i* const xsecret = (const __m128i *) secret; |
| |
| size_t i; |
| for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { |
| /* data_vec = xinput[i]; */ |
| __m128i const data_vec = _mm_loadu_si128 (xinput+i); |
| /* key_vec = xsecret[i]; */ |
| __m128i const key_vec = _mm_loadu_si128 (xsecret+i); |
| /* data_key = data_vec ^ key_vec; */ |
| __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); |
| /* data_key_lo = data_key >> 32; */ |
| __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
| /* product = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */ |
| __m128i const product = _mm_mul_epu32 (data_key, data_key_lo); |
| /* xacc[i] += swap(data_vec); */ |
| __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2)); |
| __m128i const sum = _mm_add_epi64(xacc[i], data_swap); |
| /* xacc[i] += product; */ |
| xacc[i] = _mm_add_epi64(product, sum); |
| } } |
| } |
| |
| XXH_FORCE_INLINE XXH_TARGET_SSE2 void |
| XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
| { |
| XXH_ASSERT((((size_t)acc) & 15) == 0); |
| { XXH_ALIGN(16) __m128i* const xacc = (__m128i*) acc; |
| /* Unaligned. This is mainly for pointer arithmetic, and because |
| * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */ |
| const __m128i* const xsecret = (const __m128i *) secret; |
| const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1); |
| |
| size_t i; |
| for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) { |
| /* xacc[i] ^= (xacc[i] >> 47) */ |
| __m128i const acc_vec = xacc[i]; |
| __m128i const shifted = _mm_srli_epi64 (acc_vec, 47); |
| __m128i const data_vec = _mm_xor_si128 (acc_vec, shifted); |
| /* xacc[i] ^= xsecret[i]; */ |
| __m128i const key_vec = _mm_loadu_si128 (xsecret+i); |
| __m128i const data_key = _mm_xor_si128 (data_vec, key_vec); |
| |
| /* xacc[i] *= XXH_PRIME32_1; */ |
| __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1)); |
| __m128i const prod_lo = _mm_mul_epu32 (data_key, prime32); |
| __m128i const prod_hi = _mm_mul_epu32 (data_key_hi, prime32); |
| xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32)); |
| } |
| } |
| } |
| |
| XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
| { |
| XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); |
| (void)(&XXH_writeLE64); |
| { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i); |
| |
| # if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900 |
| // MSVC 32bit mode does not support _mm_set_epi64x before 2015 |
| XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, -(xxh_i64)seed64 }; |
| __m128i const seed = _mm_load_si128((__m128i const*)seed64x2); |
| # else |
| __m128i const seed = _mm_set_epi64x(-(xxh_i64)seed64, (xxh_i64)seed64); |
| # endif |
| int i; |
| |
| XXH_ALIGN(64) const float* const src = (float const*) XXH3_kSecret; |
| XXH_ALIGN(XXH_SEC_ALIGN) __m128i* dest = (__m128i*) customSecret; |
| # if defined(__GNUC__) || defined(__clang__) |
| /* |
| * On GCC & Clang, marking 'dest' as modified will cause the compiler: |
| * - do not extract the secret from sse registers in the internal loop |
| * - use less common registers, and avoid pushing these reg into stack |
| */ |
| __asm__("" : "+r" (dest)); |
| # endif |
| |
| for (i=0; i < nbRounds; ++i) { |
| dest[i] = _mm_add_epi64(_mm_castps_si128(_mm_load_ps(src+i*4)), seed); |
| } } |
| } |
| |
| #endif |
| |
| #if (XXH_VECTOR == XXH_NEON) |
| |
| XXH_FORCE_INLINE void |
| XXH3_accumulate_512_neon( void* XXH_RESTRICT acc, |
| const void* XXH_RESTRICT input, |
| const void* XXH_RESTRICT secret) |
| { |
| XXH_ASSERT((((size_t)acc) & 15) == 0); |
| { |
| XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc; |
| /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */ |
| uint8_t const* const xinput = (const uint8_t *) input; |
| uint8_t const* const xsecret = (const uint8_t *) secret; |
| |
| size_t i; |
| for (i=0; i < XXH_STRIPE_LEN / sizeof(uint64x2_t); i++) { |
| /* data_vec = xinput[i]; */ |
| uint8x16_t data_vec = vld1q_u8(xinput + (i * 16)); |
| /* key_vec = xsecret[i]; */ |
| uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16)); |
| uint64x2_t data_key; |
| uint32x2_t data_key_lo, data_key_hi; |
| /* xacc[i] += swap(data_vec); */ |
| uint64x2_t const data64 = vreinterpretq_u64_u8(data_vec); |
| uint64x2_t const swapped = vextq_u64(data64, data64, 1); |
| xacc[i] = vaddq_u64 (xacc[i], swapped); |
| /* data_key = data_vec ^ key_vec; */ |
| data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec)); |
| /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF); |
| * data_key_hi = (uint32x2_t) (data_key >> 32); |
| * data_key = UNDEFINED; */ |
| XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); |
| /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */ |
| xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi); |
| |
| } |
| } |
| } |
| |
| XXH_FORCE_INLINE void |
| XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
| { |
| XXH_ASSERT((((size_t)acc) & 15) == 0); |
| |
| { uint64x2_t* xacc = (uint64x2_t*) acc; |
| uint8_t const* xsecret = (uint8_t const*) secret; |
| uint32x2_t prime = vdup_n_u32 (XXH_PRIME32_1); |
| |
| size_t i; |
| for (i=0; i < XXH_STRIPE_LEN/sizeof(uint64x2_t); i++) { |
| /* xacc[i] ^= (xacc[i] >> 47); */ |
| uint64x2_t acc_vec = xacc[i]; |
| uint64x2_t shifted = vshrq_n_u64 (acc_vec, 47); |
| uint64x2_t data_vec = veorq_u64 (acc_vec, shifted); |
| |
| /* xacc[i] ^= xsecret[i]; */ |
| uint8x16_t key_vec = vld1q_u8(xsecret + (i * 16)); |
| uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec)); |
| |
| /* xacc[i] *= XXH_PRIME32_1 */ |
| uint32x2_t data_key_lo, data_key_hi; |
| /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF); |
| * data_key_hi = (uint32x2_t) (xacc[i] >> 32); |
| * xacc[i] = UNDEFINED; */ |
| XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi); |
| { /* |
| * prod_hi = (data_key >> 32) * XXH_PRIME32_1; |
| * |
| * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will |
| * incorrectly "optimize" this: |
| * tmp = vmul_u32(vmovn_u64(a), vmovn_u64(b)); |
| * shifted = vshll_n_u32(tmp, 32); |
| * to this: |
| * tmp = "vmulq_u64"(a, b); // no such thing! |
| * shifted = vshlq_n_u64(tmp, 32); |
| * |
| * However, unlike SSE, Clang lacks a 64-bit multiply routine |
| * for NEON, and it scalarizes two 64-bit multiplies instead. |
| * |
| * vmull_u32 has the same timing as vmul_u32, and it avoids |
| * this bug completely. |
| * See https://bugs.llvm.org/show_bug.cgi?id=39967 |
| */ |
| uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime); |
| /* xacc[i] = prod_hi << 32; */ |
| xacc[i] = vshlq_n_u64(prod_hi, 32); |
| /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */ |
| xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime); |
| } |
| } } |
| } |
| |
| #endif |
| |
| #if (XXH_VECTOR == XXH_VSX) |
| |
| XXH_FORCE_INLINE void |
| XXH3_accumulate_512_vsx( void* XXH_RESTRICT acc, |
| const void* XXH_RESTRICT input, |
| const void* XXH_RESTRICT secret) |
| { |
| xxh_u64x2* const xacc = (xxh_u64x2*) acc; /* presumed aligned */ |
| xxh_u64x2 const* const xinput = (xxh_u64x2 const*) input; /* no alignment restriction */ |
| xxh_u64x2 const* const xsecret = (xxh_u64x2 const*) secret; /* no alignment restriction */ |
| xxh_u64x2 const v32 = { 32, 32 }; |
| size_t i; |
| for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { |
| /* data_vec = xinput[i]; */ |
| xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i); |
| /* key_vec = xsecret[i]; */ |
| xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); |
| xxh_u64x2 const data_key = data_vec ^ key_vec; |
| /* shuffled = (data_key << 32) | (data_key >> 32); */ |
| xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32); |
| /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */ |
| xxh_u64x2 const product = XXH_vec_mulo((xxh_u32x4)data_key, shuffled); |
| xacc[i] += product; |
| |
| /* swap high and low halves */ |
| #ifdef __s390x__ |
| xxh_u64x2 const data_swapped = vec_permi(data_vec, data_vec, 2); |
| #else |
| xxh_u64x2 const data_swapped = vec_xxpermdi(data_vec, data_vec, 2); |
| #endif |
| xacc[i] += data_swapped; |
| } |
| } |
| |
| XXH_FORCE_INLINE void |
| XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
| { |
| XXH_ASSERT((((size_t)acc) & 15) == 0); |
| |
| { xxh_u64x2* const xacc = (xxh_u64x2*) acc; |
| const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret; |
| /* constants */ |
| xxh_u64x2 const v32 = { 32, 32 }; |
| xxh_u64x2 const v47 = { 47, 47 }; |
| xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 }; |
| size_t i; |
| for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) { |
| /* xacc[i] ^= (xacc[i] >> 47); */ |
| xxh_u64x2 const acc_vec = xacc[i]; |
| xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47); |
| |
| /* xacc[i] ^= xsecret[i]; */ |
| xxh_u64x2 const key_vec = XXH_vec_loadu(xsecret + i); |
| xxh_u64x2 const data_key = data_vec ^ key_vec; |
| |
| /* xacc[i] *= XXH_PRIME32_1 */ |
| /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF); */ |
| xxh_u64x2 const prod_even = XXH_vec_mule((xxh_u32x4)data_key, prime); |
| /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32); */ |
| xxh_u64x2 const prod_odd = XXH_vec_mulo((xxh_u32x4)data_key, prime); |
| xacc[i] = prod_odd + (prod_even << v32); |
| } } |
| } |
| |
| #endif |
| |
| /* scalar variants - universal */ |
| |
| XXH_FORCE_INLINE void |
| XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc, |
| const void* XXH_RESTRICT input, |
| const void* XXH_RESTRICT secret) |
| { |
| XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ |
| const xxh_u8* const xinput = (const xxh_u8*) input; /* no alignment restriction */ |
| const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */ |
| size_t i; |
| XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0); |
| for (i=0; i < XXH_ACC_NB; i++) { |
| xxh_u64 const data_val = XXH_readLE64(xinput + 8*i); |
| xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8); |
| xacc[i ^ 1] += data_val; /* swap adjacent lanes */ |
| xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32); |
| } |
| } |
| |
| XXH_FORCE_INLINE void |
| XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret) |
| { |
| XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */ |
| const xxh_u8* const xsecret = (const xxh_u8*) secret; /* no alignment restriction */ |
| size_t i; |
| XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0); |
| for (i=0; i < XXH_ACC_NB; i++) { |
| xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i); |
| xxh_u64 acc64 = xacc[i]; |
| acc64 = XXH_xorshift64(acc64, 47); |
| acc64 ^= key64; |
| acc64 *= XXH_PRIME32_1; |
| xacc[i] = acc64; |
| } |
| } |
| |
| XXH_FORCE_INLINE void |
| XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64) |
| { |
| /* |
| * We need a separate pointer for the hack below, |
| * which requires a non-const pointer. |
| * Any decent compiler will optimize this out otherwise. |
| */ |
| const xxh_u8* kSecretPtr = XXH3_kSecret; |
| XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0); |
| |
| #if defined(__clang__) && defined(__aarch64__) |
| /* |
| * UGLY HACK: |
| * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are |
| * placed sequentially, in order, at the top of the unrolled loop. |
| * |
| * While MOVK is great for generating constants (2 cycles for a 64-bit |
| * constant compared to 4 cycles for LDR), long MOVK chains stall the |
| * integer pipelines: |
| * I L S |
| * MOVK |
| * MOVK |
| * MOVK |
| * MOVK |
| * ADD |
| * SUB STR |
| * STR |
| * By forcing loads from memory (as the asm line causes Clang to assume |
| * that XXH3_kSecretPtr has been changed), the pipelines are used more |
| * efficiently: |
| * I L S |
| * LDR |
| * ADD LDR |
| * SUB STR |
| * STR |
| * XXH3_64bits_withSeed, len == 256, Snapdragon 835 |
| * without hack: 2654.4 MB/s |
| * with hack: 3202.9 MB/s |
| */ |
| __asm__("" : "+r" (kSecretPtr)); |
| #endif |
| /* |
| * Note: in debug mode, this overrides the asm optimization |
| * and Clang will emit MOVK chains again. |
| */ |
| XXH_ASSERT(kSecretPtr == XXH3_kSecret); |
| |
| { int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16; |
| int i; |
| for (i=0; i < nbRounds; i++) { |
| /* |
| * The asm hack causes Clang to assume that kSecretPtr aliases with |
| * customSecret, and on aarch64, this prevented LDP from merging two |
| * loads together for free. Putting the loads together before the stores |
| * properly generates LDP. |
| */ |
| xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i) + seed64; |
| xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64; |
| XXH_writeLE64((xxh_u8*)customSecret + 16*i, lo); |
| XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi); |
| } } |
| } |
| |
| |
| typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*); |
| typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*); |
| typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64); |
| |
| |
| #if (XXH_VECTOR == XXH_AVX512) |
| |
| #define XXH3_accumulate_512 XXH3_accumulate_512_avx512 |
| #define XXH3_scrambleAcc XXH3_scrambleAcc_avx512 |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512 |
| |
| #elif (XXH_VECTOR == XXH_AVX2) |
| |
| #define XXH3_accumulate_512 XXH3_accumulate_512_avx2 |
| #define XXH3_scrambleAcc XXH3_scrambleAcc_avx2 |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2 |
| |
| #elif (XXH_VECTOR == XXH_SSE2) |
| |
| #define XXH3_accumulate_512 XXH3_accumulate_512_sse2 |
| #define XXH3_scrambleAcc XXH3_scrambleAcc_sse2 |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2 |
| |
| #elif (XXH_VECTOR == XXH_NEON) |
| |
| #define XXH3_accumulate_512 XXH3_accumulate_512_neon |
| #define XXH3_scrambleAcc XXH3_scrambleAcc_neon |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
| |
| #elif (XXH_VECTOR == XXH_VSX) |
| |
| #define XXH3_accumulate_512 XXH3_accumulate_512_vsx |
| #define XXH3_scrambleAcc XXH3_scrambleAcc_vsx |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
| |
| #else /* scalar */ |
| |
| #define XXH3_accumulate_512 XXH3_accumulate_512_scalar |
| #define XXH3_scrambleAcc XXH3_scrambleAcc_scalar |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar |
| |
| #endif |
| |
| |
| |
| #ifndef XXH_PREFETCH_DIST |
| # ifdef __clang__ |
| # define XXH_PREFETCH_DIST 320 |
| # else |
| # if (XXH_VECTOR == XXH_AVX512) |
| # define XXH_PREFETCH_DIST 512 |
| # else |
| # define XXH_PREFETCH_DIST 384 |
| # endif |
| # endif /* __clang__ */ |
| #endif /* XXH_PREFETCH_DIST */ |
| |
| /* |
| * XXH3_accumulate() |
| * Loops over XXH3_accumulate_512(). |
| * Assumption: nbStripes will not overflow the secret size |
| */ |
| XXH_FORCE_INLINE void |
| XXH3_accumulate( xxh_u64* XXH_RESTRICT acc, |
| const xxh_u8* XXH_RESTRICT input, |
| const xxh_u8* XXH_RESTRICT secret, |
| size_t nbStripes, |
| XXH3_f_accumulate_512 f_acc512) |
| { |
| size_t n; |
| for (n = 0; n < nbStripes; n++ ) { |
| const xxh_u8* const in = input + n*XXH_STRIPE_LEN; |
| XXH_PREFETCH(in + XXH_PREFETCH_DIST); |
| f_acc512(acc, |
| in, |
| secret + n*XXH_SECRET_CONSUME_RATE); |
| } |
| } |
| |
| XXH_FORCE_INLINE void |
| XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc, |
| const xxh_u8* XXH_RESTRICT input, size_t len, |
| const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| XXH3_f_accumulate_512 f_acc512, |
| XXH3_f_scrambleAcc f_scramble) |
| { |
| size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE; |
| size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock; |
| size_t const nb_blocks = (len - 1) / block_len; |
| |
| size_t n; |
| |
| XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
| |
| for (n = 0; n < nb_blocks; n++) { |
| XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512); |
| f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN); |
| } |
| |
| /* last partial block */ |
| XXH_ASSERT(len > XXH_STRIPE_LEN); |
| { size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN; |
| XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE)); |
| XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512); |
| |
| /* last stripe */ |
| { const xxh_u8* const p = input + len - XXH_STRIPE_LEN; |
| #define XXH_SECRET_LASTACC_START 7 /* not aligned on 8, last secret is different from acc & scrambler */ |
| f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START); |
| } } |
| } |
| |
| XXH_FORCE_INLINE xxh_u64 |
| XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret) |
| { |
| return XXH3_mul128_fold64( |
| acc[0] ^ XXH_readLE64(secret), |
| acc[1] ^ XXH_readLE64(secret+8) ); |
| } |
| |
| static XXH64_hash_t |
| XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start) |
| { |
| xxh_u64 result64 = start; |
| size_t i = 0; |
| |
| for (i = 0; i < 4; i++) { |
| result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i); |
| #if defined(__clang__) /* Clang */ \ |
| && (defined(__arm__) || defined(__thumb__)) /* ARMv7 */ \ |
| && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \ |
| && !defined(XXH_ENABLE_AUTOVECTORIZE) /* Define to disable */ |
| /* |
| * UGLY HACK: |
| * Prevent autovectorization on Clang ARMv7-a. Exact same problem as |
| * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b. |
| * XXH3_64bits, len == 256, Snapdragon 835: |
| * without hack: 2063.7 MB/s |
| * with hack: 2560.7 MB/s |
| */ |
| __asm__("" : "+r" (result64)); |
| #endif |
| } |
| |
| return XXH3_avalanche(result64); |
| } |
| |
| #define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \ |
| XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 } |
| |
| XXH_FORCE_INLINE XXH64_hash_t |
| XXH3_hashLong_64b_internal(const xxh_u8* XXH_RESTRICT input, size_t len, |
| const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| XXH3_f_accumulate_512 f_acc512, |
| XXH3_f_scrambleAcc f_scramble) |
| { |
| XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; |
| |
| XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize, f_acc512, f_scramble); |
| |
| /* converge into final hash */ |
| XXH_STATIC_ASSERT(sizeof(acc) == 64); |
| /* do not align on 8, so that the secret is different from the accumulator */ |
| #define XXH_SECRET_MERGEACCS_START 11 |
| XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
| return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1); |
| } |
| |
| /* |
| * It's important for performance that XXH3_hashLong is not inlined. |
| */ |
| XXH_NO_INLINE XXH64_hash_t |
| XXH3_hashLong_64b_withSecret(const xxh_u8* XXH_RESTRICT input, size_t len, |
| XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
| { |
| (void)seed64; |
| return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc); |
| } |
| |
| /* |
| * It's important for performance that XXH3_hashLong is not inlined. |
| * Since the function is not inlined, the compiler may not be able to understand that, |
| * in some scenarios, its `secret` argument is actually a compile time constant. |
| * This variant enforces that the compiler can detect that, |
| * and uses this opportunity to streamline the generated code for better performance. |
| */ |
| XXH_NO_INLINE XXH64_hash_t |
| XXH3_hashLong_64b_default(const xxh_u8* XXH_RESTRICT input, size_t len, |
| XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
| { |
| (void)seed64; (void)secret; (void)secretLen; |
| return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc); |
| } |
| |
| /* |
| * XXH3_hashLong_64b_withSeed(): |
| * Generate a custom key based on alteration of default XXH3_kSecret with the seed, |
| * and then use this key for long mode hashing. |
| * |
| * This operation is decently fast but nonetheless costs a little bit of time. |
| * Try to avoid it whenever possible (typically when seed==0). |
| * |
| * It's important for performance that XXH3_hashLong is not inlined. Not sure |
| * why (uop cache maybe?), but the difference is large and easily measurable. |
| */ |
| XXH_FORCE_INLINE XXH64_hash_t |
| XXH3_hashLong_64b_withSeed_internal(const xxh_u8* input, size_t len, |
| XXH64_hash_t seed, |
| XXH3_f_accumulate_512 f_acc512, |
| XXH3_f_scrambleAcc f_scramble, |
| XXH3_f_initCustomSecret f_initSec) |
| { |
| if (seed == 0) |
| return XXH3_hashLong_64b_internal(input, len, |
| XXH3_kSecret, sizeof(XXH3_kSecret), |
| f_acc512, f_scramble); |
| { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
| f_initSec(secret, seed); |
| return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret), |
| f_acc512, f_scramble); |
| } |
| } |
| |
| /* |
| * It's important for performance that XXH3_hashLong is not inlined. |
| */ |
| XXH_NO_INLINE XXH64_hash_t |
| XXH3_hashLong_64b_withSeed(const xxh_u8* input, size_t len, |
| XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen) |
| { |
| (void)secret; (void)secretLen; |
| return XXH3_hashLong_64b_withSeed_internal(input, len, seed, |
| XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret); |
| } |
| |
| |
| typedef XXH64_hash_t (*XXH3_hashLong64_f)(const xxh_u8* XXH_RESTRICT, size_t, |
| XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t); |
| |
| XXH_FORCE_INLINE XXH64_hash_t |
| XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len, |
| XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen, |
| XXH3_hashLong64_f f_hashLong) |
| { |
| XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); |
| /* |
| * If an action is to be taken if `secretLen` condition is not respected, |
| * it should be done here. |
| * For now, it's a contract pre-condition. |
| * Adding a check and a branch here would cost performance at every hash. |
| * Also, note that function signature doesn't offer room to return an error. |
| */ |
| if (len <= 16) |
| return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64); |
| if (len <= 128) |
| return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
| if (len <= XXH3_MIDSIZE_MAX) |
| return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64); |
| return f_hashLong((const xxh_u8*)input, len, seed64, (const xxh_u8*)secret, secretLen); |
| } |
| |
| |
| /* === Public entry point === */ |
| |
| XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len) |
| { |
| return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default); |
| } |
| |
| XXH_PUBLIC_API XXH64_hash_t |
| XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) |
| { |
| return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret); |
| } |
| |
| XXH_PUBLIC_API XXH64_hash_t |
| XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) |
| { |
| return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed); |
| } |
| |
| |
| /* === XXH3 streaming === */ |
| |
| /* |
| * Malloc's a pointer that is always aligned to align. |
| * |
| * This must be freed with `XXH_alignedFree()`. |
| * |
| * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte |
| * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2 |
| * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON. |
| * |
| * This underalignment previously caused a rather obvious crash which went |
| * completely unnoticed due to XXH3_createState() not actually being tested. |
| * Credit to RedSpah for noticing this bug. |
| * |
| * The alignment is done manually: Functions like posix_memalign or _mm_malloc |
| * are avoided: To maintain portability, we would have to write a fallback |
| * like this anyways, and besides, testing for the existence of library |
| * functions without relying on external build tools is impossible. |
| * |
| * The method is simple: Overallocate, manually align, and store the offset |
| * to the original behind the returned pointer. |
| * |
| * Align must be a power of 2 and 8 <= align <= 128. |
| */ |
| static void* XXH_alignedMalloc(size_t s, size_t align) |
| { |
| XXH_ASSERT(align <= 128 && align >= 8); /* range check */ |
| XXH_ASSERT((align & (align-1)) == 0); /* power of 2 */ |
| XXH_ASSERT(s != 0 && s < (s + align)); /* empty/overflow */ |
| { /* Overallocate to make room for manual realignment and an offset byte */ |
| xxh_u8* base = (xxh_u8*)XXH_malloc(s + align); |
| if (base != NULL) { |
| /* |
| * Get the offset needed to align this pointer. |
| * |
| * Even if the returned pointer is aligned, there will always be |
| * at least one byte to store the offset to the original pointer. |
| */ |
| size_t offset = align - ((size_t)base & (align - 1)); /* base % align */ |
| /* Add the offset for the now-aligned pointer */ |
| xxh_u8* ptr = base + offset; |
| |
| XXH_ASSERT((size_t)ptr % align == 0); |
| |
| /* Store the offset immediately before the returned pointer. */ |
| ptr[-1] = (xxh_u8)offset; |
| return ptr; |
| } |
| return NULL; |
| } |
| } |
| /* |
| * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass |
| * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout. |
| */ |
| static void XXH_alignedFree(void* p) |
| { |
| if (p != NULL) { |
| xxh_u8* ptr = (xxh_u8*)p; |
| /* Get the offset byte we added in XXH_malloc. */ |
| xxh_u8 offset = ptr[-1]; |
| /* Free the original malloc'd pointer */ |
| xxh_u8* base = ptr - offset; |
| XXH_free(base); |
| } |
| } |
| XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void) |
| { |
| return (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64); |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr) |
| { |
| XXH_alignedFree(statePtr); |
| return XXH_OK; |
| } |
| |
| XXH_PUBLIC_API void |
| XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state) |
| { |
| memcpy(dst_state, src_state, sizeof(*dst_state)); |
| } |
| |
| static void |
| XXH3_64bits_reset_internal(XXH3_state_t* statePtr, |
| XXH64_hash_t seed, |
| const xxh_u8* secret, size_t secretSize) |
| { |
| XXH_ASSERT(statePtr != NULL); |
| memset(statePtr, 0, sizeof(*statePtr)); |
| statePtr->acc[0] = XXH_PRIME32_3; |
| statePtr->acc[1] = XXH_PRIME64_1; |
| statePtr->acc[2] = XXH_PRIME64_2; |
| statePtr->acc[3] = XXH_PRIME64_3; |
| statePtr->acc[4] = XXH_PRIME64_4; |
| statePtr->acc[5] = XXH_PRIME32_2; |
| statePtr->acc[6] = XXH_PRIME64_5; |
| statePtr->acc[7] = XXH_PRIME32_1; |
| statePtr->seed = seed; |
| XXH_ASSERT(secret != NULL); |
| statePtr->extSecret = secret; |
| XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); |
| statePtr->secretLimit = secretSize - XXH_STRIPE_LEN; |
| statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE; |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_64bits_reset(XXH3_state_t* statePtr) |
| { |
| if (statePtr == NULL) return XXH_ERROR; |
| XXH3_64bits_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); |
| return XXH_OK; |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) |
| { |
| if (statePtr == NULL) return XXH_ERROR; |
| XXH3_64bits_reset_internal(statePtr, 0, (const xxh_u8*)secret, secretSize); |
| if (secret == NULL) return XXH_ERROR; |
| if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
| return XXH_OK; |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) |
| { |
| if (statePtr == NULL) return XXH_ERROR; |
| XXH3_64bits_reset_internal(statePtr, seed, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); |
| XXH3_initCustomSecret(statePtr->customSecret, seed); |
| statePtr->extSecret = NULL; |
| return XXH_OK; |
| } |
| |
| /* Note : when XXH3_consumeStripes() is invoked, |
| * there must be a guarantee that at least one more byte must be consumed from input |
| * so that the function can blindly consume all stripes using the "normal" secret segment */ |
| XXH_FORCE_INLINE void |
| XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc, |
| size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock, |
| const xxh_u8* XXH_RESTRICT input, size_t nbStripes, |
| const xxh_u8* XXH_RESTRICT secret, size_t secretLimit, |
| XXH3_f_accumulate_512 f_acc512, |
| XXH3_f_scrambleAcc f_scramble) |
| { |
| XXH_ASSERT(nbStripes <= nbStripesPerBlock); /* can handle max 1 scramble per invocation */ |
| XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock); |
| if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) { |
| /* need a scrambling operation */ |
| size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr; |
| size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock; |
| XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512); |
| f_scramble(acc, secret + secretLimit); |
| XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512); |
| *nbStripesSoFarPtr = nbStripesAfterBlock; |
| } else { |
| XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512); |
| *nbStripesSoFarPtr += nbStripes; |
| } |
| } |
| |
| /* |
| * Both XXH3_64bits_update and XXH3_128bits_update use this routine. |
| */ |
| XXH_FORCE_INLINE XXH_errorcode |
| XXH3_update(XXH3_state_t* state, |
| const xxh_u8* input, size_t len, |
| XXH3_f_accumulate_512 f_acc512, |
| XXH3_f_scrambleAcc f_scramble) |
| { |
| if (input==NULL) |
| #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1) |
| return XXH_OK; |
| #else |
| return XXH_ERROR; |
| #endif |
| |
| { const xxh_u8* const bEnd = input + len; |
| const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
| |
| state->totalLen += len; |
| |
| if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) { /* fill in tmp buffer */ |
| XXH_memcpy(state->buffer + state->bufferedSize, input, len); |
| state->bufferedSize += (XXH32_hash_t)len; |
| return XXH_OK; |
| } |
| /* total input is now > XXH3_INTERNALBUFFER_SIZE */ |
| |
| #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN) |
| XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0); /* clean multiple */ |
| |
| /* |
| * Internal buffer is partially filled (always, except at beginning) |
| * Complete it, then consume it. |
| */ |
| if (state->bufferedSize) { |
| size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize; |
| XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize); |
| input += loadSize; |
| XXH3_consumeStripes(state->acc, |
| &state->nbStripesSoFar, state->nbStripesPerBlock, |
| state->buffer, XXH3_INTERNALBUFFER_STRIPES, |
| secret, state->secretLimit, |
| f_acc512, f_scramble); |
| state->bufferedSize = 0; |
| } |
| XXH_ASSERT(input < bEnd); |
| |
| /* Consume input by a multiple of internal buffer size */ |
| if (input+XXH3_INTERNALBUFFER_SIZE < bEnd) { |
| const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE; |
| do { |
| XXH3_consumeStripes(state->acc, |
| &state->nbStripesSoFar, state->nbStripesPerBlock, |
| input, XXH3_INTERNALBUFFER_STRIPES, |
| secret, state->secretLimit, |
| f_acc512, f_scramble); |
| input += XXH3_INTERNALBUFFER_SIZE; |
| } while (input<limit); |
| /* for last partial stripe */ |
| memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN); |
| } |
| XXH_ASSERT(input < bEnd); |
| |
| /* Some remaining input (always) : buffer it */ |
| XXH_memcpy(state->buffer, input, (size_t)(bEnd-input)); |
| state->bufferedSize = (XXH32_hash_t)(bEnd-input); |
| } |
| |
| return XXH_OK; |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len) |
| { |
| return XXH3_update(state, (const xxh_u8*)input, len, |
| XXH3_accumulate_512, XXH3_scrambleAcc); |
| } |
| |
| |
| XXH_FORCE_INLINE void |
| XXH3_digest_long (XXH64_hash_t* acc, |
| const XXH3_state_t* state, |
| const unsigned char* secret) |
| { |
| /* |
| * Digest on a local copy. This way, the state remains unaltered, and it can |
| * continue ingesting more input afterwards. |
| */ |
| memcpy(acc, state->acc, sizeof(state->acc)); |
| if (state->bufferedSize >= XXH_STRIPE_LEN) { |
| size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN; |
| size_t nbStripesSoFar = state->nbStripesSoFar; |
| XXH3_consumeStripes(acc, |
| &nbStripesSoFar, state->nbStripesPerBlock, |
| state->buffer, nbStripes, |
| secret, state->secretLimit, |
| XXH3_accumulate_512, XXH3_scrambleAcc); |
| /* last stripe */ |
| XXH3_accumulate_512(acc, |
| state->buffer + state->bufferedSize - XXH_STRIPE_LEN, |
| secret + state->secretLimit - XXH_SECRET_LASTACC_START); |
| } else { /* bufferedSize < XXH_STRIPE_LEN */ |
| xxh_u8 lastStripe[XXH_STRIPE_LEN]; |
| size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize; |
| XXH_ASSERT(state->bufferedSize > 0); /* there is always some input buffered */ |
| memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize); |
| memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize); |
| XXH3_accumulate_512(acc, |
| lastStripe, |
| secret + state->secretLimit - XXH_SECRET_LASTACC_START); |
| } |
| } |
| |
| XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state) |
| { |
| const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
| if (state->totalLen > XXH3_MIDSIZE_MAX) { |
| XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; |
| XXH3_digest_long(acc, state, secret); |
| return XXH3_mergeAccs(acc, |
| secret + XXH_SECRET_MERGEACCS_START, |
| (xxh_u64)state->totalLen * XXH_PRIME64_1); |
| } |
| /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */ |
| if (state->seed) |
| return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); |
| return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), |
| secret, state->secretLimit + XXH_STRIPE_LEN); |
| } |
| |
| |
| #define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x)) |
| |
| XXH_PUBLIC_API void |
| XXH3_generateSecret(void* secretBuffer, const void* customSeed, size_t customSeedSize) |
| { |
| XXH_ASSERT(secretBuffer != NULL); |
| if (customSeedSize == 0) { |
| memcpy(secretBuffer, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); |
| return; |
| } |
| XXH_ASSERT(customSeed != NULL); |
| |
| { size_t const segmentSize = sizeof(XXH128_hash_t); |
| size_t const nbSegments = XXH_SECRET_DEFAULT_SIZE / segmentSize; |
| XXH128_canonical_t scrambler; |
| XXH64_hash_t seeds[12]; |
| size_t segnb; |
| XXH_ASSERT(nbSegments == 12); |
| XXH_ASSERT(segmentSize * nbSegments == XXH_SECRET_DEFAULT_SIZE); /* exact multiple */ |
| XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0)); |
| |
| /* |
| * Copy customSeed to seeds[], truncating or repeating as necessary. |
| */ |
| { size_t toFill = XXH_MIN(customSeedSize, sizeof(seeds)); |
| size_t filled = toFill; |
| memcpy(seeds, customSeed, toFill); |
| while (filled < sizeof(seeds)) { |
| toFill = XXH_MIN(filled, sizeof(seeds) - filled); |
| memcpy((char*)seeds + filled, seeds, toFill); |
| filled += toFill; |
| } } |
| |
| /* generate secret */ |
| memcpy(secretBuffer, &scrambler, sizeof(scrambler)); |
| for (segnb=1; segnb < nbSegments; segnb++) { |
| size_t const segmentStart = segnb * segmentSize; |
| XXH128_canonical_t segment; |
| XXH128_canonicalFromHash(&segment, |
| XXH128(&scrambler, sizeof(scrambler), XXH_readLE64(seeds + segnb) + segnb) ); |
| memcpy((char*)secretBuffer + segmentStart, &segment, sizeof(segment)); |
| } } |
| } |
| |
| |
| /* ========================================== |
| * XXH3 128 bits (a.k.a XXH128) |
| * ========================================== |
| * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant, |
| * even without counting the significantly larger output size. |
| * |
| * For example, extra steps are taken to avoid the seed-dependent collisions |
| * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B). |
| * |
| * This strength naturally comes at the cost of some speed, especially on short |
| * lengths. Note that longer hashes are about as fast as the 64-bit version |
| * due to it using only a slight modification of the 64-bit loop. |
| * |
| * XXH128 is also more oriented towards 64-bit machines. It is still extremely |
| * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64). |
| */ |
| |
| XXH_FORCE_INLINE XXH128_hash_t |
| XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| { |
| /* A doubled version of 1to3_64b with different constants. */ |
| XXH_ASSERT(input != NULL); |
| XXH_ASSERT(1 <= len && len <= 3); |
| XXH_ASSERT(secret != NULL); |
| /* |
| * len = 1: combinedl = { input[0], 0x01, input[0], input[0] } |
| * len = 2: combinedl = { input[1], 0x02, input[0], input[1] } |
| * len = 3: combinedl = { input[2], 0x03, input[0], input[1] } |
| */ |
| { xxh_u8 const c1 = input[0]; |
| xxh_u8 const c2 = input[len >> 1]; |
| xxh_u8 const c3 = input[len - 1]; |
| xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24) |
| | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8); |
| xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13); |
| xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed; |
| xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed; |
| xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl; |
| xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph; |
| XXH128_hash_t h128; |
| h128.low64 = XXH64_avalanche(keyed_lo); |
| h128.high64 = XXH64_avalanche(keyed_hi); |
| return h128; |
| } |
| } |
| |
| XXH_FORCE_INLINE XXH128_hash_t |
| XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| { |
| XXH_ASSERT(input != NULL); |
| XXH_ASSERT(secret != NULL); |
| XXH_ASSERT(4 <= len && len <= 8); |
| seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32; |
| { xxh_u32 const input_lo = XXH_readLE32(input); |
| xxh_u32 const input_hi = XXH_readLE32(input + len - 4); |
| xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32); |
| xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed; |
| xxh_u64 const keyed = input_64 ^ bitflip; |
| |
| /* Shift len to the left to ensure it is even, this avoids even multiplies. */ |
| XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2)); |
| |
| m128.high64 += (m128.low64 << 1); |
| m128.low64 ^= (m128.high64 >> 3); |
| |
| m128.low64 = XXH_xorshift64(m128.low64, 35); |
| m128.low64 *= 0x9FB21C651E98DF25ULL; |
| m128.low64 = XXH_xorshift64(m128.low64, 28); |
| m128.high64 = XXH3_avalanche(m128.high64); |
| return m128; |
| } |
| } |
| |
| XXH_FORCE_INLINE XXH128_hash_t |
| XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| { |
| XXH_ASSERT(input != NULL); |
| XXH_ASSERT(secret != NULL); |
| XXH_ASSERT(9 <= len && len <= 16); |
| { xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed; |
| xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed; |
| xxh_u64 const input_lo = XXH_readLE64(input); |
| xxh_u64 input_hi = XXH_readLE64(input + len - 8); |
| XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1); |
| /* |
| * Put len in the middle of m128 to ensure that the length gets mixed to |
| * both the low and high bits in the 128x64 multiply below. |
| */ |
| m128.low64 += (xxh_u64)(len - 1) << 54; |
| input_hi ^= bitfliph; |
| /* |
| * Add the high 32 bits of input_hi to the high 32 bits of m128, then |
| * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to |
| * the high 64 bits of m128. |
| * |
| * The best approach to this operation is different on 32-bit and 64-bit. |
| */ |
| if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */ |
| /* |
| * 32-bit optimized version, which is more readable. |
| * |
| * On 32-bit, it removes an ADC and delays a dependency between the two |
| * halves of m128.high64, but it generates an extra mask on 64-bit. |
| */ |
| m128.high64 += (input_hi & 0xFFFFFFFF00000000) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2); |
| } else { |
| /* |
| * 64-bit optimized (albeit more confusing) version. |
| * |
| * Uses some properties of addition and multiplication to remove the mask: |
| * |
| * Let: |
| * a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF) |
| * b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000) |
| * c = XXH_PRIME32_2 |
| * |
| * a + (b * c) |
| * Inverse Property: x + y - x == y |
| * a + (b * (1 + c - 1)) |
| * Distributive Property: x * (y + z) == (x * y) + (x * z) |
| * a + (b * 1) + (b * (c - 1)) |
| * Identity Property: x * 1 == x |
| * a + b + (b * (c - 1)) |
| * |
| * Substitute a, b, and c: |
| * input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) |
| * |
| * Since input_hi.hi + input_hi.lo == input_hi, we get this: |
| * input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1)) |
| */ |
| m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1); |
| } |
| /* m128 ^= XXH_swap64(m128 >> 64); */ |
| m128.low64 ^= XXH_swap64(m128.high64); |
| |
| { /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */ |
| XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2); |
| h128.high64 += m128.high64 * XXH_PRIME64_2; |
| |
| h128.low64 = XXH3_avalanche(h128.low64); |
| h128.high64 = XXH3_avalanche(h128.high64); |
| return h128; |
| } } |
| } |
| |
| /* |
| * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN |
| */ |
| XXH_FORCE_INLINE XXH128_hash_t |
| XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed) |
| { |
| XXH_ASSERT(len <= 16); |
| { if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed); |
| if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed); |
| if (len) return XXH3_len_1to3_128b(input, len, secret, seed); |
| { XXH128_hash_t h128; |
| xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72); |
| xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88); |
| h128.low64 = XXH64_avalanche(seed ^ bitflipl); |
| h128.high64 = XXH64_avalanche( seed ^ bitfliph); |
| return h128; |
| } } |
| } |
| |
| /* |
| * A bit slower than XXH3_mix16B, but handles multiply by zero better. |
| */ |
| XXH_FORCE_INLINE XXH128_hash_t |
| XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2, |
| const xxh_u8* secret, XXH64_hash_t seed) |
| { |
| acc.low64 += XXH3_mix16B (input_1, secret+0, seed); |
| acc.low64 ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8); |
| acc.high64 += XXH3_mix16B (input_2, secret+16, seed); |
| acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8); |
| return acc; |
| } |
| |
| |
| XXH_FORCE_INLINE XXH128_hash_t |
| XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len, |
| const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| XXH64_hash_t seed) |
| { |
| XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
| XXH_ASSERT(16 < len && len <= 128); |
| |
| { XXH128_hash_t acc; |
| acc.low64 = len * XXH_PRIME64_1; |
| acc.high64 = 0; |
| if (len > 32) { |
| if (len > 64) { |
| if (len > 96) { |
| acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed); |
| } |
| acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed); |
| } |
| acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed); |
| } |
| acc = XXH128_mix32B(acc, input, input+len-16, secret, seed); |
| { XXH128_hash_t h128; |
| h128.low64 = acc.low64 + acc.high64; |
| h128.high64 = (acc.low64 * XXH_PRIME64_1) |
| + (acc.high64 * XXH_PRIME64_4) |
| + ((len - seed) * XXH_PRIME64_2); |
| h128.low64 = XXH3_avalanche(h128.low64); |
| h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); |
| return h128; |
| } |
| } |
| } |
| |
| XXH_NO_INLINE XXH128_hash_t |
| XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len, |
| const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| XXH64_hash_t seed) |
| { |
| XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize; |
| XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX); |
| |
| { XXH128_hash_t acc; |
| int const nbRounds = (int)len / 32; |
| int i; |
| acc.low64 = len * XXH_PRIME64_1; |
| acc.high64 = 0; |
| for (i=0; i<4; i++) { |
| acc = XXH128_mix32B(acc, |
| input + (32 * i), |
| input + (32 * i) + 16, |
| secret + (32 * i), |
| seed); |
| } |
| acc.low64 = XXH3_avalanche(acc.low64); |
| acc.high64 = XXH3_avalanche(acc.high64); |
| XXH_ASSERT(nbRounds >= 4); |
| for (i=4 ; i < nbRounds; i++) { |
| acc = XXH128_mix32B(acc, |
| input + (32 * i), |
| input + (32 * i) + 16, |
| secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)), |
| seed); |
| } |
| /* last bytes */ |
| acc = XXH128_mix32B(acc, |
| input + len - 16, |
| input + len - 32, |
| secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, |
| 0ULL - seed); |
| |
| { XXH128_hash_t h128; |
| h128.low64 = acc.low64 + acc.high64; |
| h128.high64 = (acc.low64 * XXH_PRIME64_1) |
| + (acc.high64 * XXH_PRIME64_4) |
| + ((len - seed) * XXH_PRIME64_2); |
| h128.low64 = XXH3_avalanche(h128.low64); |
| h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64); |
| return h128; |
| } |
| } |
| } |
| |
| XXH_FORCE_INLINE XXH128_hash_t |
| XXH3_hashLong_128b_internal(const xxh_u8* XXH_RESTRICT input, size_t len, |
| const xxh_u8* XXH_RESTRICT secret, size_t secretSize, |
| XXH3_f_accumulate_512 f_acc512, |
| XXH3_f_scrambleAcc f_scramble) |
| { |
| XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC; |
| |
| XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize, f_acc512, f_scramble); |
| |
| /* converge into final hash */ |
| XXH_STATIC_ASSERT(sizeof(acc) == 64); |
| XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
| { XXH128_hash_t h128; |
| h128.low64 = XXH3_mergeAccs(acc, |
| secret + XXH_SECRET_MERGEACCS_START, |
| (xxh_u64)len * XXH_PRIME64_1); |
| h128.high64 = XXH3_mergeAccs(acc, |
| secret + secretSize |
| - sizeof(acc) - XXH_SECRET_MERGEACCS_START, |
| ~((xxh_u64)len * XXH_PRIME64_2)); |
| return h128; |
| } |
| } |
| |
| /* |
| * It's important for performance that XXH3_hashLong is not inlined. |
| */ |
| XXH_NO_INLINE XXH128_hash_t |
| XXH3_hashLong_128b_default(const xxh_u8* XXH_RESTRICT input, size_t len, |
| XXH64_hash_t seed64, |
| const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
| { |
| (void)seed64; (void)secret; (void)secretLen; |
| return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), |
| XXH3_accumulate_512, XXH3_scrambleAcc); |
| } |
| |
| /* |
| * It's important for performance that XXH3_hashLong is not inlined. |
| */ |
| XXH_NO_INLINE XXH128_hash_t |
| XXH3_hashLong_128b_withSecret(const xxh_u8* XXH_RESTRICT input, size_t len, |
| XXH64_hash_t seed64, |
| const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
| { |
| (void)seed64; |
| return XXH3_hashLong_128b_internal(input, len, secret, secretLen, |
| XXH3_accumulate_512, XXH3_scrambleAcc); |
| } |
| |
| XXH_FORCE_INLINE XXH128_hash_t |
| XXH3_hashLong_128b_withSeed_internal(const xxh_u8* XXH_RESTRICT input, size_t len, |
| XXH64_hash_t seed64, |
| XXH3_f_accumulate_512 f_acc512, |
| XXH3_f_scrambleAcc f_scramble, |
| XXH3_f_initCustomSecret f_initSec) |
| { |
| if (seed64 == 0) |
| return XXH3_hashLong_128b_internal(input, len, |
| XXH3_kSecret, sizeof(XXH3_kSecret), |
| f_acc512, f_scramble); |
| { XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE]; |
| f_initSec(secret, seed64); |
| return XXH3_hashLong_128b_internal(input, len, secret, sizeof(secret), |
| f_acc512, f_scramble); |
| } |
| } |
| |
| /* |
| * It's important for performance that XXH3_hashLong is not inlined. |
| */ |
| XXH_NO_INLINE XXH128_hash_t |
| XXH3_hashLong_128b_withSeed(const xxh_u8* input, size_t len, |
| XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen) |
| { |
| (void)secret; (void)secretLen; |
| return XXH3_hashLong_128b_withSeed_internal(input, len, seed64, |
| XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret); |
| } |
| |
| typedef XXH128_hash_t (*XXH3_hashLong128_f)(const xxh_u8* XXH_RESTRICT, size_t, |
| XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t); |
| |
| XXH_FORCE_INLINE XXH128_hash_t |
| XXH3_128bits_internal(const void* input, size_t len, |
| XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen, |
| XXH3_hashLong128_f f_hl128) |
| { |
| XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN); |
| /* |
| * If an action is to be taken if `secret` conditions are not respected, |
| * it should be done here. |
| * For now, it's a contract pre-condition. |
| * Adding a check and a branch here would cost performance at every hash. |
| */ |
| if (len <= 16) |
| return XXH3_len_0to16_128b((const xxh_u8*)input, len, secret, seed64); |
| if (len <= 128) |
| return XXH3_len_17to128_128b((const xxh_u8*)input, len, secret, secretLen, seed64); |
| if (len <= XXH3_MIDSIZE_MAX) |
| return XXH3_len_129to240_128b((const xxh_u8*)input, len, secret, secretLen, seed64); |
| return f_hl128((const xxh_u8*)input, len, seed64, secret, secretLen); |
| } |
| |
| |
| /* === Public XXH128 API === */ |
| |
| XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len) |
| { |
| return XXH3_128bits_internal(input, len, 0, |
| XXH3_kSecret, sizeof(XXH3_kSecret), |
| XXH3_hashLong_128b_default); |
| } |
| |
| XXH_PUBLIC_API XXH128_hash_t |
| XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize) |
| { |
| return XXH3_128bits_internal(input, len, 0, |
| (const xxh_u8*)secret, secretSize, |
| XXH3_hashLong_128b_withSecret); |
| } |
| |
| XXH_PUBLIC_API XXH128_hash_t |
| XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed) |
| { |
| return XXH3_128bits_internal(input, len, seed, |
| XXH3_kSecret, sizeof(XXH3_kSecret), |
| XXH3_hashLong_128b_withSeed); |
| } |
| |
| XXH_PUBLIC_API XXH128_hash_t |
| XXH128(const void* input, size_t len, XXH64_hash_t seed) |
| { |
| return XXH3_128bits_withSeed(input, len, seed); |
| } |
| |
| |
| /* === XXH3 128-bit streaming === */ |
| |
| /* |
| * All the functions are actually the same as for 64-bit streaming variant. |
| * The only difference is the finalizatiom routine. |
| */ |
| |
| static void |
| XXH3_128bits_reset_internal(XXH3_state_t* statePtr, |
| XXH64_hash_t seed, |
| const xxh_u8* secret, size_t secretSize) |
| { |
| XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize); |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_128bits_reset(XXH3_state_t* statePtr) |
| { |
| if (statePtr == NULL) return XXH_ERROR; |
| XXH3_128bits_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); |
| return XXH_OK; |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize) |
| { |
| if (statePtr == NULL) return XXH_ERROR; |
| XXH3_128bits_reset_internal(statePtr, 0, (const xxh_u8*)secret, secretSize); |
| if (secret == NULL) return XXH_ERROR; |
| if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR; |
| return XXH_OK; |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed) |
| { |
| if (statePtr == NULL) return XXH_ERROR; |
| XXH3_128bits_reset_internal(statePtr, seed, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE); |
| XXH3_initCustomSecret(statePtr->customSecret, seed); |
| statePtr->extSecret = NULL; |
| return XXH_OK; |
| } |
| |
| XXH_PUBLIC_API XXH_errorcode |
| XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len) |
| { |
| return XXH3_update(state, (const xxh_u8*)input, len, |
| XXH3_accumulate_512, XXH3_scrambleAcc); |
| } |
| |
| XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state) |
| { |
| const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret; |
| if (state->totalLen > XXH3_MIDSIZE_MAX) { |
| XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB]; |
| XXH3_digest_long(acc, state, secret); |
| XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START); |
| { XXH128_hash_t h128; |
| h128.low64 = XXH3_mergeAccs(acc, |
| secret + XXH_SECRET_MERGEACCS_START, |
| (xxh_u64)state->totalLen * XXH_PRIME64_1); |
| h128.high64 = XXH3_mergeAccs(acc, |
| secret + state->secretLimit + XXH_STRIPE_LEN |
| - sizeof(acc) - XXH_SECRET_MERGEACCS_START, |
| ~((xxh_u64)state->totalLen * XXH_PRIME64_2)); |
| return h128; |
| } |
| } |
| /* len <= XXH3_MIDSIZE_MAX : short code */ |
| if (state->seed) |
| return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed); |
| return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), |
| secret, state->secretLimit + XXH_STRIPE_LEN); |
| } |
| |
| /* 128-bit utility functions */ |
| |
| #include <string.h> /* memcmp, memcpy */ |
| |
| /* return : 1 is equal, 0 if different */ |
| XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2) |
| { |
| /* note : XXH128_hash_t is compact, it has no padding byte */ |
| return !(memcmp(&h1, &h2, sizeof(h1))); |
| } |
| |
| /* This prototype is compatible with stdlib's qsort(). |
| * return : >0 if *h128_1 > *h128_2 |
| * <0 if *h128_1 < *h128_2 |
| * =0 if *h128_1 == *h128_2 */ |
| XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2) |
| { |
| XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1; |
| XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2; |
| int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64); |
| /* note : bets that, in most cases, hash values are different */ |
| if (hcmp) return hcmp; |
| return (h1.low64 > h2.low64) - (h2.low64 > h1.low64); |
| } |
| |
| |
| /*====== Canonical representation ======*/ |
| XXH_PUBLIC_API void |
| XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash) |
| { |
| XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t)); |
| if (XXH_CPU_LITTLE_ENDIAN) { |
| hash.high64 = XXH_swap64(hash.high64); |
| hash.low64 = XXH_swap64(hash.low64); |
| } |
| memcpy(dst, &hash.high64, sizeof(hash.high64)); |
| memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64)); |
| } |
| |
| XXH_PUBLIC_API XXH128_hash_t |
| XXH128_hashFromCanonical(const XXH128_canonical_t* src) |
| { |
| XXH128_hash_t h; |
| h.high64 = XXH_readBE64(src); |
| h.low64 = XXH_readBE64(src->digest + 8); |
| return h; |
| } |
| |
| /* Pop our optimization override from above */ |
| #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \ |
| && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \ |
| && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */ |
| # pragma GCC pop_options |
| #endif |
| |
| #endif /* XXH3_H_1397135465 */ |