| /* |
| ** 2010 February 1 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** |
| ** This file contains the implementation of a write-ahead log file used in |
| ** "journal_mode=wal" mode. |
| */ |
| #ifndef SQLITE_OMIT_WAL |
| |
| #include "wal.h" |
| |
| |
| /* |
| ** WRITE-AHEAD LOG (WAL) FILE FORMAT |
| ** |
| ** A wal file consists of a header followed by zero or more "frames". |
| ** The header is 12 bytes in size and consists of the following three |
| ** big-endian 32-bit unsigned integer values: |
| ** |
| ** 0: Database page size, |
| ** 4: Randomly selected salt value 1, |
| ** 8: Randomly selected salt value 2. |
| ** |
| ** Immediately following the header are zero or more frames. Each |
| ** frame itself consists of a 16-byte header followed by a <page-size> bytes |
| ** of page data. The header is broken into 4 big-endian 32-bit unsigned |
| ** integer values, as follows: |
| ** |
| ** 0: Page number. |
| ** 4: For commit records, the size of the database image in pages |
| ** after the commit. For all other records, zero. |
| ** 8: Checksum value 1. |
| ** 12: Checksum value 2. |
| */ |
| |
| /* |
| ** WAL-INDEX FILE FORMAT |
| ** |
| ** The wal-index file consists of a 32-byte header region, followed by an |
| ** 8-byte region that contains no useful data (used to apply byte-range locks |
| ** to), followed by the data region. |
| ** |
| ** The contents of both the header and data region are specified in terms |
| ** of 1, 2 and 4 byte unsigned integers. All integers are stored in |
| ** machine-endian order. The wal-index is not a persistent file and |
| ** so it does not need to be portable across archtectures. |
| ** |
| ** A wal-index file is essentially a shadow-pager map. It contains a |
| ** mapping from database page number to the set of locations in the wal |
| ** file that contain versions of the database page. When a database |
| ** client needs to read a page of data, it first queries the wal-index |
| ** file to determine if the required version of the page is stored in |
| ** the wal. If so, the page is read from the wal. If not, the page is |
| ** read from the database file. |
| ** |
| ** Whenever a transaction is appended to the wal or a checkpoint transfers |
| ** data from the wal into the database file, the wal-index is |
| ** updated accordingly. |
| ** |
| ** The fields in the wal-index file header are described in the comment |
| ** directly above the definition of struct WalIndexHdr (see below). |
| ** Immediately following the fields in the WalIndexHdr structure is |
| ** an 8 byte checksum based on the contents of the header. This field is |
| ** not the same as the iCheck1 and iCheck2 fields of the WalIndexHdr. |
| */ |
| |
| /* Object declarations */ |
| typedef struct WalIndexHdr WalIndexHdr; |
| typedef struct WalIterator WalIterator; |
| |
| |
| /* |
| ** The following object stores a copy of the wal-index header. |
| ** |
| ** Member variables iCheck1 and iCheck2 contain the checksum for the |
| ** last frame written to the wal, or 2 and 3 respectively if the log |
| ** is currently empty. |
| */ |
| struct WalIndexHdr { |
| u32 iChange; /* Counter incremented each transaction */ |
| u32 pgsz; /* Database page size in bytes */ |
| u32 iLastPg; /* Address of last valid frame in log */ |
| u32 nPage; /* Size of database in pages */ |
| u32 iCheck1; /* Checkpoint value 1 */ |
| u32 iCheck2; /* Checkpoint value 2 */ |
| }; |
| |
| /* Size of serialized WalIndexHdr object. */ |
| #define WALINDEX_HDR_NFIELD (sizeof(WalIndexHdr) / sizeof(u32)) |
| |
| /* A block of 16 bytes beginning at WALINDEX_LOCK_OFFSET is reserved |
| ** for locks. Since some systems only feature mandatory file-locks, we |
| ** do not read or write data from the region of the file on which locks |
| ** are applied. |
| */ |
| #define WALINDEX_LOCK_OFFSET ((sizeof(WalIndexHdr))+2*sizeof(u32)) |
| #define WALINDEX_LOCK_RESERVED 8 |
| |
| /* Size of header before each frame in wal */ |
| #define WAL_FRAME_HDRSIZE 16 |
| |
| /* Size of write ahead log header */ |
| #define WAL_HDRSIZE 12 |
| |
| /* |
| ** Return the offset of frame iFrame in the write-ahead log file, |
| ** assuming a database page size of pgsz bytes. The offset returned |
| ** is to the start of the write-ahead log frame-header. |
| */ |
| #define walFrameOffset(iFrame, pgsz) ( \ |
| WAL_HDRSIZE + ((iFrame)-1)*((pgsz)+WAL_FRAME_HDRSIZE) \ |
| ) |
| |
| /* |
| ** An open write-ahead log file is represented by an instance of the |
| ** following object. |
| */ |
| struct Wal { |
| sqlite3_vfs *pVfs; /* The VFS used to create pFd */ |
| sqlite3_file *pFd; /* File handle for WAL file */ |
| u32 iCallback; /* Value to pass to log callback (or 0) */ |
| sqlite3_shm *pWIndex; /* The open wal-index file */ |
| int szWIndex; /* Size of the wal-index that is mapped in mem */ |
| u32 *pWiData; /* Pointer to wal-index content in memory */ |
| u8 lockState; /* SQLITE_SHM_xxxx constant showing lock state */ |
| u8 readerType; /* SQLITE_SHM_READ or SQLITE_SHM_READ_FULL */ |
| WalIndexHdr hdr; /* Wal-index for current snapshot */ |
| char *zName; /* Name of underlying storage */ |
| }; |
| |
| |
| /* |
| ** This structure is used to implement an iterator that iterates through |
| ** all frames in the log in database page order. Where two or more frames |
| ** correspond to the same database page, the iterator visits only the |
| ** frame most recently written to the log. |
| ** |
| ** The internals of this structure are only accessed by: |
| ** |
| ** walIteratorInit() - Create a new iterator, |
| ** walIteratorNext() - Step an iterator, |
| ** walIteratorFree() - Free an iterator. |
| ** |
| ** This functionality is used by the checkpoint code (see walCheckpoint()). |
| */ |
| struct WalIterator { |
| int nSegment; /* Size of WalIterator.aSegment[] array */ |
| int nFinal; /* Elements in segment nSegment-1 */ |
| struct WalSegment { |
| int iNext; /* Next aIndex index */ |
| u8 *aIndex; /* Pointer to index array */ |
| u32 *aDbPage; /* Pointer to db page array */ |
| } aSegment[1]; |
| }; |
| |
| |
| /* |
| ** Generate an 8 byte checksum based on the data in array aByte[] and the |
| ** initial values of aCksum[0] and aCksum[1]. The checksum is written into |
| ** aCksum[] before returning. |
| ** |
| ** The range of bytes to checksum is treated as an array of 32-bit |
| ** little-endian unsigned integers. For each integer X in the array, from |
| ** start to finish, do the following: |
| ** |
| ** aCksum[0] += X; |
| ** aCksum[1] += aCksum[0]; |
| ** |
| ** For the calculation above, use 64-bit unsigned accumulators. Before |
| ** returning, truncate the values to 32-bits as follows: |
| ** |
| ** aCksum[0] = (u32)(aCksum[0] + (aCksum[0]>>24)); |
| ** aCksum[1] = (u32)(aCksum[1] + (aCksum[1]>>24)); |
| */ |
| static void walChecksumBytes(u8 *aByte, int nByte, u32 *aCksum){ |
| u64 sum1 = aCksum[0]; |
| u64 sum2 = aCksum[1]; |
| u32 *a32 = (u32 *)aByte; |
| u32 *aEnd = (u32 *)&aByte[nByte]; |
| |
| assert( (nByte&0x00000003)==0 ); |
| |
| if( SQLITE_LITTLEENDIAN ){ |
| #ifdef SQLITE_DEBUG |
| u8 *a = (u8 *)a32; |
| assert( *a32==(a[0] + (a[1]<<8) + (a[2]<<16) + (a[3]<<24)) ); |
| #endif |
| do { |
| sum1 += *a32; |
| sum2 += sum1; |
| } while( ++a32<aEnd ); |
| }else{ |
| do { |
| u8 *a = (u8*)a32; |
| sum1 += a[0] + (a[1]<<8) + (a[2]<<16) + (a[3]<<24); |
| sum2 += sum1; |
| } while( ++a32<aEnd ); |
| } |
| |
| aCksum[0] = sum1 + (sum1>>24); |
| aCksum[1] = sum2 + (sum2>>24); |
| } |
| |
| /* |
| ** Attempt to change the lock status. |
| ** |
| ** When changing the lock status to SQLITE_SHM_READ, store the |
| ** type of reader lock (either SQLITE_SHM_READ or SQLITE_SHM_READ_FULL) |
| ** in pWal->readerType. |
| */ |
| static int walSetLock(Wal *pWal, int desiredStatus){ |
| int rc, got; |
| if( pWal->lockState==desiredStatus ) return SQLITE_OK; |
| rc = pWal->pVfs->xShmLock(pWal->pWIndex, desiredStatus, &got); |
| pWal->lockState = got; |
| if( got==SQLITE_SHM_READ_FULL || got==SQLITE_SHM_READ ){ |
| pWal->readerType = got; |
| pWal->lockState = SQLITE_SHM_READ; |
| } |
| return rc; |
| } |
| |
| /* |
| ** Update the header of the wal-index file. |
| */ |
| static void walIndexWriteHdr(Wal *pWal, WalIndexHdr *pHdr){ |
| u32 *aHdr = pWal->pWiData; /* Write header here */ |
| u32 *aCksum = &aHdr[WALINDEX_HDR_NFIELD]; /* Write header cksum here */ |
| |
| assert( WALINDEX_HDR_NFIELD==sizeof(WalIndexHdr)/4 ); |
| assert( aHdr!=0 ); |
| memcpy(aHdr, pHdr, sizeof(WalIndexHdr)); |
| aCksum[0] = aCksum[1] = 1; |
| walChecksumBytes((u8 *)aHdr, sizeof(WalIndexHdr), aCksum); |
| } |
| |
| /* |
| ** This function encodes a single frame header and writes it to a buffer |
| ** supplied by the caller. A frame-header is made up of a series of |
| ** 4-byte big-endian integers, as follows: |
| ** |
| ** 0: Database page size in bytes. |
| ** 4: Page number. |
| ** 8: New database size (for commit frames, otherwise zero). |
| ** 12: Frame checksum 1. |
| ** 16: Frame checksum 2. |
| */ |
| static void walEncodeFrame( |
| u32 *aCksum, /* IN/OUT: Checksum values */ |
| u32 iPage, /* Database page number for frame */ |
| u32 nTruncate, /* New db size (or 0 for non-commit frames) */ |
| int nData, /* Database page size (size of aData[]) */ |
| u8 *aData, /* Pointer to page data (for checksum) */ |
| u8 *aFrame /* OUT: Write encoded frame here */ |
| ){ |
| assert( WAL_FRAME_HDRSIZE==16 ); |
| |
| sqlite3Put4byte(&aFrame[0], iPage); |
| sqlite3Put4byte(&aFrame[4], nTruncate); |
| |
| walChecksumBytes(aFrame, 8, aCksum); |
| walChecksumBytes(aData, nData, aCksum); |
| |
| sqlite3Put4byte(&aFrame[8], aCksum[0]); |
| sqlite3Put4byte(&aFrame[12], aCksum[1]); |
| } |
| |
| /* |
| ** Return 1 and populate *piPage, *pnTruncate and aCksum if the |
| ** frame checksum looks Ok. Otherwise return 0. |
| */ |
| static int walDecodeFrame( |
| u32 *aCksum, /* IN/OUT: Checksum values */ |
| u32 *piPage, /* OUT: Database page number for frame */ |
| u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ |
| int nData, /* Database page size (size of aData[]) */ |
| u8 *aData, /* Pointer to page data (for checksum) */ |
| u8 *aFrame /* Frame data */ |
| ){ |
| assert( WAL_FRAME_HDRSIZE==16 ); |
| |
| walChecksumBytes(aFrame, 8, aCksum); |
| walChecksumBytes(aData, nData, aCksum); |
| |
| if( aCksum[0]!=sqlite3Get4byte(&aFrame[8]) |
| || aCksum[1]!=sqlite3Get4byte(&aFrame[12]) |
| ){ |
| /* Checksum failed. */ |
| return 0; |
| } |
| |
| *piPage = sqlite3Get4byte(&aFrame[0]); |
| *pnTruncate = sqlite3Get4byte(&aFrame[4]); |
| return 1; |
| } |
| |
| static void walMergesort8( |
| Pgno *aContent, /* Pages in wal */ |
| u8 *aBuffer, /* Buffer of at least *pnList items to use */ |
| u8 *aList, /* IN/OUT: List to sort */ |
| int *pnList /* IN/OUT: Number of elements in aList[] */ |
| ){ |
| int nList = *pnList; |
| if( nList>1 ){ |
| int nLeft = nList / 2; /* Elements in left list */ |
| int nRight = nList - nLeft; /* Elements in right list */ |
| u8 *aLeft = aList; /* Left list */ |
| u8 *aRight = &aList[nLeft]; /* Right list */ |
| int iLeft = 0; /* Current index in aLeft */ |
| int iRight = 0; /* Current index in aright */ |
| int iOut = 0; /* Current index in output buffer */ |
| |
| /* TODO: Change to non-recursive version. */ |
| walMergesort8(aContent, aBuffer, aLeft, &nLeft); |
| walMergesort8(aContent, aBuffer, aRight, &nRight); |
| |
| while( iRight<nRight || iLeft<nLeft ){ |
| u8 logpage; |
| Pgno dbpage; |
| |
| if( (iLeft<nLeft) |
| && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) |
| ){ |
| logpage = aLeft[iLeft++]; |
| }else{ |
| logpage = aRight[iRight++]; |
| } |
| dbpage = aContent[logpage]; |
| |
| aBuffer[iOut++] = logpage; |
| if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; |
| |
| assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); |
| assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); |
| } |
| memcpy(aList, aBuffer, sizeof(aList[0])*iOut); |
| *pnList = iOut; |
| } |
| |
| #ifdef SQLITE_DEBUG |
| { |
| int i; |
| for(i=1; i<*pnList; i++){ |
| assert( aContent[aList[i]] > aContent[aList[i-1]] ); |
| } |
| } |
| #endif |
| } |
| |
| |
| /* |
| ** Return the index in the WalIndex.aData array that corresponds to |
| ** frame iFrame. The wal-index file consists of a header, followed by |
| ** alternating "map" and "index" blocks. |
| */ |
| static int walIndexEntry(u32 iFrame){ |
| return ( |
| (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)/sizeof(u32) |
| + (((iFrame-1)>>8)<<6) /* Indexes that occur before iFrame */ |
| + iFrame-1 /* Db page numbers that occur before iFrame */ |
| ); |
| } |
| |
| /* |
| ** Release our reference to the wal-index memory map, if we are holding |
| ** it. |
| */ |
| static void walIndexUnmap(Wal *pWal){ |
| if( pWal->pWiData ){ |
| pWal->pVfs->xShmRelease(pWal->pWIndex); |
| pWal->pWiData = 0; |
| } |
| } |
| |
| /* |
| ** Map the wal-index file into memory if it isn't already. |
| ** |
| ** The reqSize parameter is the minimum required size of the mapping. |
| ** A value of -1 means "don't care". The reqSize parameter is ignored |
| ** if the mapping is already held. |
| */ |
| static int walIndexMap(Wal *pWal, int reqSize){ |
| int rc = SQLITE_OK; |
| if( pWal->pWiData==0 ){ |
| rc = pWal->pVfs->xShmGet(pWal->pWIndex, reqSize, &pWal->szWIndex, |
| (void**)(char*)&pWal->pWiData); |
| if( rc==SQLITE_OK && pWal->pWiData==0 ){ |
| /* Make sure pWal->pWiData is not NULL while we are holding the |
| ** lock on the mapping. */ |
| assert( pWal->szWIndex==0 ); |
| pWal->pWiData = &pWal->iCallback; |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Remap the wal-index so that the mapping covers the full size |
| ** of the underlying file. |
| ** |
| ** If enlargeTo is non-negative, then increase the size of the underlying |
| ** storage to be at least as big as enlargeTo before remapping. |
| */ |
| static int walIndexRemap(Wal *pWal, int enlargeTo){ |
| int rc; |
| int sz; |
| rc = pWal->pVfs->xShmSize(pWal->pWIndex, enlargeTo, &sz); |
| if( rc==SQLITE_OK && sz>pWal->szWIndex ){ |
| walIndexUnmap(pWal); |
| rc = walIndexMap(pWal, sz); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Increment by which to increase the wal-index file size. |
| */ |
| #define WALINDEX_MMAP_INCREMENT (64*1024) |
| |
| /* |
| ** Set an entry in the wal-index map to map log frame iFrame to db |
| ** page iPage. Values are always appended to the wal-index (i.e. the |
| ** value of iFrame is always exactly one more than the value passed to |
| ** the previous call), but that restriction is not enforced or asserted |
| ** here. |
| */ |
| static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ |
| u32 iSlot = walIndexEntry(iFrame); |
| |
| walIndexMap(pWal, -1); |
| while( ((iSlot+128)*sizeof(u32))>=pWal->szWIndex ){ |
| int rc; |
| int nByte = pWal->szWIndex + WALINDEX_MMAP_INCREMENT; |
| |
| /* Enlarge the storage, then remap it. */ |
| rc = walIndexRemap(pWal, nByte); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| } |
| |
| /* Set the wal-index entry itself */ |
| pWal->pWiData[iSlot] = iPage; |
| |
| /* If the frame number is a multiple of 256 (frames are numbered starting |
| ** at 1), build an index of the most recently added 256 frames. |
| */ |
| if( (iFrame&0x000000FF)==0 ){ |
| int i; /* Iterator used while initializing aIndex */ |
| u32 *aFrame; /* Pointer to array of 256 frames */ |
| int nIndex; /* Number of entries in index */ |
| u8 *aIndex; /* 256 bytes to build index in */ |
| u8 *aTmp; /* Scratch space to use while sorting */ |
| |
| aFrame = &pWal->pWiData[iSlot-255]; |
| aIndex = (u8 *)&pWal->pWiData[iSlot+1]; |
| aTmp = &aIndex[256]; |
| |
| nIndex = 256; |
| for(i=0; i<256; i++) aIndex[i] = (u8)i; |
| walMergesort8(aFrame, aTmp, aIndex, &nIndex); |
| memset(&aIndex[nIndex], aIndex[nIndex-1], 256-nIndex); |
| } |
| |
| return SQLITE_OK; |
| } |
| |
| |
| /* |
| ** Recover the wal-index by reading the write-ahead log file. |
| ** The caller must hold RECOVER lock on the wal-index file. |
| */ |
| static int walIndexRecover(Wal *pWal){ |
| int rc; /* Return Code */ |
| i64 nSize; /* Size of log file */ |
| WalIndexHdr hdr; /* Recovered wal-index header */ |
| |
| assert( pWal->lockState==SQLITE_SHM_RECOVER ); |
| memset(&hdr, 0, sizeof(hdr)); |
| |
| rc = sqlite3OsFileSize(pWal->pFd, &nSize); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| if( nSize>WAL_FRAME_HDRSIZE ){ |
| u8 aBuf[WAL_FRAME_HDRSIZE]; /* Buffer to load first frame header into */ |
| u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ |
| int nFrame; /* Number of bytes at aFrame */ |
| u8 *aData; /* Pointer to data part of aFrame buffer */ |
| int iFrame; /* Index of last frame read */ |
| i64 iOffset; /* Next offset to read from log file */ |
| int nPgsz; /* Page size according to the log */ |
| u32 aCksum[2]; /* Running checksum */ |
| |
| /* Read in the first frame header in the file (to determine the |
| ** database page size). |
| */ |
| rc = sqlite3OsRead(pWal->pFd, aBuf, WAL_HDRSIZE, 0); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| /* If the database page size is not a power of two, or is greater than |
| ** SQLITE_MAX_PAGE_SIZE, conclude that the log file contains no valid data. |
| */ |
| nPgsz = sqlite3Get4byte(&aBuf[0]); |
| if( nPgsz&(nPgsz-1) || nPgsz>SQLITE_MAX_PAGE_SIZE || nPgsz<512 ){ |
| goto finished; |
| } |
| aCksum[0] = sqlite3Get4byte(&aBuf[4]); |
| aCksum[1] = sqlite3Get4byte(&aBuf[8]); |
| |
| /* Malloc a buffer to read frames into. */ |
| nFrame = nPgsz + WAL_FRAME_HDRSIZE; |
| aFrame = (u8 *)sqlite3_malloc(nFrame); |
| if( !aFrame ){ |
| return SQLITE_NOMEM; |
| } |
| aData = &aFrame[WAL_FRAME_HDRSIZE]; |
| |
| /* Read all frames from the log file. */ |
| iFrame = 0; |
| for(iOffset=WAL_HDRSIZE; (iOffset+nFrame)<=nSize; iOffset+=nFrame){ |
| u32 pgno; /* Database page number for frame */ |
| u32 nTruncate; /* dbsize field from frame header */ |
| int isValid; /* True if this frame is valid */ |
| |
| /* Read and decode the next log frame. */ |
| rc = sqlite3OsRead(pWal->pFd, aFrame, nFrame, iOffset); |
| if( rc!=SQLITE_OK ) break; |
| isValid = walDecodeFrame(aCksum, &pgno, &nTruncate, nPgsz, aData, aFrame); |
| if( !isValid ) break; |
| walIndexAppend(pWal, ++iFrame, pgno); |
| |
| /* If nTruncate is non-zero, this is a commit record. */ |
| if( nTruncate ){ |
| hdr.iCheck1 = aCksum[0]; |
| hdr.iCheck2 = aCksum[1]; |
| hdr.iLastPg = iFrame; |
| hdr.nPage = nTruncate; |
| hdr.pgsz = nPgsz; |
| } |
| } |
| |
| sqlite3_free(aFrame); |
| }else{ |
| hdr.iCheck1 = 2; |
| hdr.iCheck2 = 3; |
| } |
| |
| finished: |
| walIndexWriteHdr(pWal, &hdr); |
| return rc; |
| } |
| |
| /* |
| ** Open a connection to the log file associated with database zDb. The |
| ** database file does not actually have to exist. zDb is used only to |
| ** figure out the name of the log file to open. If the log file does not |
| ** exist it is created by this call. |
| ** |
| ** A SHARED lock should be held on the database file when this function |
| ** is called. The purpose of this SHARED lock is to prevent any other |
| ** client from unlinking the log or wal-index file. If another process |
| ** were to do this just after this client opened one of these files, the |
| ** system would be badly broken. |
| */ |
| int sqlite3WalOpen( |
| sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ |
| const char *zDb, /* Name of database file */ |
| Wal **ppWal /* OUT: Allocated Wal handle */ |
| ){ |
| int rc = SQLITE_OK; /* Return Code */ |
| Wal *pRet; /* Object to allocate and return */ |
| int flags; /* Flags passed to OsOpen() */ |
| char *zWal = 0; /* Path to WAL file */ |
| int nWal; /* Length of zWal in bytes */ |
| |
| assert( zDb ); |
| if( pVfs->xShmOpen==0 ) return SQLITE_CANTOPEN_BKPT; |
| |
| /* Allocate an instance of struct Wal to return. */ |
| *ppWal = 0; |
| nWal = strlen(zDb); |
| pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile + nWal+5); |
| if( !pRet ) goto wal_open_out; |
| pRet->pVfs = pVfs; |
| pRet->pFd = (sqlite3_file *)&pRet[1]; |
| pRet->zName = zWal = pVfs->szOsFile + (char*)pRet->pFd; |
| sqlite3_snprintf(nWal+5, zWal, "%s-wal", zDb); |
| rc = pVfs->xShmOpen(pVfs, zWal, &pRet->pWIndex); |
| if( rc ) goto wal_open_out; |
| |
| /* Open file handle on the write-ahead log file. */ |
| flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_MAIN_JOURNAL); |
| rc = sqlite3OsOpen(pVfs, zWal, pRet->pFd, flags, &flags); |
| |
| wal_open_out: |
| if( rc!=SQLITE_OK ){ |
| if( pRet ){ |
| pVfs->xShmClose(pRet->pWIndex, 0); |
| sqlite3OsClose(pRet->pFd); |
| sqlite3_free(pRet); |
| } |
| } |
| *ppWal = pRet; |
| return rc; |
| } |
| |
| static int walIteratorNext( |
| WalIterator *p, /* Iterator */ |
| u32 *piPage, /* OUT: Next db page to write */ |
| u32 *piFrame /* OUT: Wal frame to read from */ |
| ){ |
| u32 iMin = *piPage; |
| u32 iRet = 0xFFFFFFFF; |
| int i; |
| int nBlock = p->nFinal; |
| |
| for(i=p->nSegment-1; i>=0; i--){ |
| struct WalSegment *pSegment = &p->aSegment[i]; |
| while( pSegment->iNext<nBlock ){ |
| u32 iPg = pSegment->aDbPage[pSegment->aIndex[pSegment->iNext]]; |
| if( iPg>iMin ){ |
| if( iPg<iRet ){ |
| iRet = iPg; |
| *piFrame = i*256 + 1 + pSegment->aIndex[pSegment->iNext]; |
| } |
| break; |
| } |
| pSegment->iNext++; |
| } |
| |
| nBlock = 256; |
| } |
| |
| *piPage = iRet; |
| return (iRet==0xFFFFFFFF); |
| } |
| |
| static WalIterator *walIteratorInit(Wal *pWal){ |
| u32 *aData; /* Content of the wal-index file */ |
| WalIterator *p; /* Return value */ |
| int nSegment; /* Number of segments to merge */ |
| u32 iLast; /* Last frame in log */ |
| int nByte; /* Number of bytes to allocate */ |
| int i; /* Iterator variable */ |
| int nFinal; /* Number of unindexed entries */ |
| struct WalSegment *pFinal; /* Final (unindexed) segment */ |
| u8 *aTmp; /* Temp space used by merge-sort */ |
| |
| walIndexMap(pWal, -1); |
| aData = pWal->pWiData; |
| iLast = pWal->hdr.iLastPg; |
| nSegment = (iLast >> 8) + 1; |
| nFinal = (iLast & 0x000000FF); |
| |
| nByte = sizeof(WalIterator) + (nSegment-1)*sizeof(struct WalSegment) + 512; |
| p = (WalIterator *)sqlite3_malloc(nByte); |
| if( p ){ |
| memset(p, 0, nByte); |
| p->nSegment = nSegment; |
| p->nFinal = nFinal; |
| } |
| |
| for(i=0; i<nSegment-1; i++){ |
| p->aSegment[i].aDbPage = &aData[walIndexEntry(i*256+1)]; |
| p->aSegment[i].aIndex = (u8 *)&aData[walIndexEntry(i*256+1)+256]; |
| } |
| pFinal = &p->aSegment[nSegment-1]; |
| |
| pFinal->aDbPage = &aData[walIndexEntry((nSegment-1)*256+1)]; |
| pFinal->aIndex = (u8 *)&pFinal[1]; |
| aTmp = &pFinal->aIndex[256]; |
| for(i=0; i<nFinal; i++){ |
| pFinal->aIndex[i] = i; |
| } |
| walMergesort8(pFinal->aDbPage, aTmp, pFinal->aIndex, &nFinal); |
| p->nFinal = nFinal; |
| |
| return p; |
| } |
| |
| /* |
| ** Free a log iterator allocated by walIteratorInit(). |
| */ |
| static void walIteratorFree(WalIterator *p){ |
| sqlite3_free(p); |
| } |
| |
| /* |
| ** Checkpoint the contents of the log file. |
| */ |
| static int walCheckpoint( |
| Wal *pWal, /* Wal connection */ |
| sqlite3_file *pFd, /* File descriptor open on db file */ |
| int sync_flags, /* Flags for OsSync() (or 0) */ |
| u8 *zBuf /* Temporary buffer to use */ |
| ){ |
| int rc; /* Return code */ |
| int pgsz = pWal->hdr.pgsz; /* Database page-size */ |
| WalIterator *pIter = 0; /* Wal iterator context */ |
| u32 iDbpage = 0; /* Next database page to write */ |
| u32 iFrame = 0; /* Wal frame containing data for iDbpage */ |
| |
| if( pWal->hdr.iLastPg==0 ){ |
| return SQLITE_OK; |
| } |
| |
| /* Allocate the iterator */ |
| pIter = walIteratorInit(pWal); |
| if( !pIter ) return SQLITE_NOMEM; |
| |
| /* Sync the log file to disk */ |
| if( sync_flags ){ |
| rc = sqlite3OsSync(pWal->pFd, sync_flags); |
| if( rc!=SQLITE_OK ) goto out; |
| } |
| |
| /* Iterate through the contents of the log, copying data to the db file. */ |
| while( 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ |
| rc = sqlite3OsRead(pWal->pFd, zBuf, pgsz, |
| walFrameOffset(iFrame, pgsz) + WAL_FRAME_HDRSIZE |
| ); |
| if( rc!=SQLITE_OK ) goto out; |
| rc = sqlite3OsWrite(pFd, zBuf, pgsz, (iDbpage-1)*pgsz); |
| if( rc!=SQLITE_OK ) goto out; |
| } |
| |
| /* Truncate the database file */ |
| rc = sqlite3OsTruncate(pFd, ((i64)pWal->hdr.nPage*(i64)pgsz)); |
| if( rc!=SQLITE_OK ) goto out; |
| |
| /* Sync the database file. If successful, update the wal-index. */ |
| if( sync_flags ){ |
| rc = sqlite3OsSync(pFd, sync_flags); |
| if( rc!=SQLITE_OK ) goto out; |
| } |
| pWal->hdr.iLastPg = 0; |
| pWal->hdr.iCheck1 = 2; |
| pWal->hdr.iCheck2 = 3; |
| walIndexWriteHdr(pWal, &pWal->hdr); |
| |
| /* TODO: If a crash occurs and the current log is copied into the |
| ** database there is no problem. However, if a crash occurs while |
| ** writing the next transaction into the start of the log, such that: |
| ** |
| ** * The first transaction currently in the log is left intact, but |
| ** * The second (or subsequent) transaction is damaged, |
| ** |
| ** then the database could become corrupt. |
| ** |
| ** The easiest thing to do would be to write and sync a dummy header |
| ** into the log at this point. Unfortunately, that turns out to be |
| ** an unwelcome performance hit. Alternatives are... |
| */ |
| #if 0 |
| memset(zBuf, 0, WAL_FRAME_HDRSIZE); |
| rc = sqlite3OsWrite(pWal->pFd, zBuf, WAL_FRAME_HDRSIZE, 0); |
| if( rc!=SQLITE_OK ) goto out; |
| rc = sqlite3OsSync(pWal->pFd, pWal->sync_flags); |
| #endif |
| |
| out: |
| walIteratorFree(pIter); |
| return rc; |
| } |
| |
| /* |
| ** Close a connection to a log file. |
| */ |
| int sqlite3WalClose( |
| Wal *pWal, /* Wal to close */ |
| sqlite3_file *pFd, /* Database file */ |
| int sync_flags, /* Flags to pass to OsSync() (or 0) */ |
| u8 *zBuf /* Buffer of at least page-size bytes */ |
| ){ |
| int rc = SQLITE_OK; |
| if( pWal ){ |
| int isDelete = 0; /* True to unlink wal and wal-index files */ |
| |
| /* If an EXCLUSIVE lock can be obtained on the database file (using the |
| ** ordinary, rollback-mode locking methods, this guarantees that the |
| ** connection associated with this log file is the only connection to |
| ** the database. In this case checkpoint the database and unlink both |
| ** the wal and wal-index files. |
| ** |
| ** The EXCLUSIVE lock is not released before returning. |
| */ |
| rc = sqlite3OsLock(pFd, SQLITE_LOCK_EXCLUSIVE); |
| if( rc==SQLITE_OK ){ |
| rc = walCheckpoint(pWal, pFd, sync_flags, zBuf); |
| if( rc==SQLITE_OK ){ |
| isDelete = 1; |
| } |
| walIndexUnmap(pWal); |
| } |
| |
| pWal->pVfs->xShmClose(pWal->pWIndex, isDelete); |
| sqlite3OsClose(pWal->pFd); |
| if( isDelete ){ |
| sqlite3OsDelete(pWal->pVfs, pWal->zName, 0); |
| } |
| sqlite3_free(pWal); |
| } |
| return rc; |
| } |
| |
| /* |
| ** Try to read the wal-index header. Attempt to verify the header |
| ** checksum. If the checksum can be verified, copy the wal-index |
| ** header into structure pWal->hdr. If the contents of pWal->hdr are |
| ** modified by this and pChanged is not NULL, set *pChanged to 1. |
| ** Otherwise leave *pChanged unmodified. |
| ** |
| ** If the checksum cannot be verified return SQLITE_ERROR. |
| */ |
| int walIndexTryHdr(Wal *pWal, int *pChanged){ |
| u32 aCksum[2] = {1, 1}; |
| u32 aHdr[WALINDEX_HDR_NFIELD+2]; |
| |
| if( pWal->szWIndex==0 ){ |
| int rc; |
| rc = walIndexRemap(pWal, WALINDEX_MMAP_INCREMENT); |
| if( rc ) return rc; |
| } |
| |
| /* Read the header. The caller may or may not have locked the wal-index |
| ** file, meaning it is possible that an inconsistent snapshot is read |
| ** from the file. If this happens, return SQLITE_ERROR. The caller will |
| ** retry. Or, if the caller has already locked the file and the header |
| ** still looks inconsistent, it will run recovery. |
| ** |
| ** FIX-ME: It is no longer possible to have not locked the wal-index. |
| */ |
| memcpy(aHdr, pWal->pWiData, sizeof(aHdr)); |
| walChecksumBytes((u8*)aHdr, sizeof(u32)*WALINDEX_HDR_NFIELD, aCksum); |
| if( aCksum[0]!=aHdr[WALINDEX_HDR_NFIELD] |
| || aCksum[1]!=aHdr[WALINDEX_HDR_NFIELD+1] |
| ){ |
| return SQLITE_ERROR; |
| } |
| |
| if( memcmp(&pWal->hdr, aHdr, sizeof(WalIndexHdr)) ){ |
| if( pChanged ){ |
| *pChanged = 1; |
| } |
| memcpy(&pWal->hdr, aHdr, sizeof(WalIndexHdr)); |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Read the wal-index header from the wal-index file into structure |
| ** pWal->hdr. If attempting to verify the header checksum fails, try |
| ** to recover the log before returning. |
| ** |
| ** If the wal-index header is successfully read, return SQLITE_OK. |
| ** Otherwise an SQLite error code. |
| */ |
| static int walIndexReadHdr(Wal *pWal, int *pChanged){ |
| int rc; |
| |
| assert( pWal->lockState>=SQLITE_SHM_READ ); |
| walIndexMap(pWal, -1); |
| |
| /* First try to read the header without a lock. Verify the checksum |
| ** before returning. This will almost always work. |
| */ |
| if( SQLITE_OK==walIndexTryHdr(pWal, pChanged) ){ |
| return SQLITE_OK; |
| } |
| |
| /* If the first attempt to read the header failed, lock the wal-index |
| ** file and try again. If the header checksum verification fails this |
| ** time as well, run log recovery. |
| */ |
| if( SQLITE_OK==(rc = walSetLock(pWal, SQLITE_SHM_RECOVER)) ){ |
| if( SQLITE_OK!=walIndexTryHdr(pWal, pChanged) ){ |
| if( pChanged ){ |
| *pChanged = 1; |
| } |
| rc = walIndexRecover(pWal); |
| if( rc==SQLITE_OK ){ |
| rc = walIndexTryHdr(pWal, 0); |
| } |
| } |
| walSetLock(pWal, SQLITE_SHM_READ); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** Lock a snapshot. |
| ** |
| ** If this call obtains a new read-lock and the database contents have been |
| ** modified since the most recent call to WalCloseSnapshot() on this Wal |
| ** connection, then *pChanged is set to 1 before returning. Otherwise, it |
| ** is left unmodified. This is used by the pager layer to determine whether |
| ** or not any cached pages may be safely reused. |
| */ |
| int sqlite3WalOpenSnapshot(Wal *pWal, int *pChanged){ |
| int rc; |
| |
| rc = walSetLock(pWal, SQLITE_SHM_READ); |
| if( rc==SQLITE_OK ){ |
| pWal->lockState = SQLITE_SHM_READ; |
| |
| rc = walIndexReadHdr(pWal, pChanged); |
| if( rc!=SQLITE_OK ){ |
| /* An error occured while attempting log recovery. */ |
| sqlite3WalCloseSnapshot(pWal); |
| }else{ |
| /* Check if the mapping needs to grow. */ |
| if( pWal->hdr.iLastPg |
| && walIndexEntry(pWal->hdr.iLastPg)*sizeof(u32)>=pWal->szWIndex |
| ){ |
| walIndexRemap(pWal, -1); |
| } |
| } |
| } |
| |
| walIndexUnmap(pWal); |
| return rc; |
| } |
| |
| /* |
| ** Unlock the current snapshot. |
| */ |
| void sqlite3WalCloseSnapshot(Wal *pWal){ |
| if( pWal->lockState!=SQLITE_SHM_UNLOCK ){ |
| assert( pWal->lockState==SQLITE_SHM_READ ); |
| walSetLock(pWal, SQLITE_SHM_UNLOCK); |
| } |
| } |
| |
| /* |
| ** Read a page from the log, if it is present. |
| */ |
| int sqlite3WalRead(Wal *pWal, Pgno pgno, int *pInWal, u8 *pOut){ |
| u32 iRead = 0; |
| u32 *aData; |
| int iFrame = (pWal->hdr.iLastPg & 0xFFFFFF00); |
| |
| assert( pWal->lockState==SQLITE_SHM_READ||pWal->lockState==SQLITE_SHM_WRITE ); |
| walIndexMap(pWal, -1); |
| |
| /* Do a linear search of the unindexed block of page-numbers (if any) |
| ** at the end of the wal-index. An alternative to this would be to |
| ** build an index in private memory each time a read transaction is |
| ** opened on a new snapshot. |
| */ |
| aData = pWal->pWiData; |
| if( pWal->hdr.iLastPg ){ |
| u32 *pi = &aData[walIndexEntry(pWal->hdr.iLastPg)]; |
| u32 *piStop = pi - (pWal->hdr.iLastPg & 0xFF); |
| while( *pi!=pgno && pi!=piStop ) pi--; |
| if( pi!=piStop ){ |
| iRead = (pi-piStop) + iFrame; |
| } |
| } |
| assert( iRead==0 || aData[walIndexEntry(iRead)]==pgno ); |
| |
| while( iRead==0 && iFrame>0 ){ |
| int iLow = 0; |
| int iHigh = 255; |
| u32 *aFrame; |
| u8 *aIndex; |
| |
| iFrame -= 256; |
| aFrame = &aData[walIndexEntry(iFrame+1)]; |
| aIndex = (u8 *)&aFrame[256]; |
| |
| while( iLow<=iHigh ){ |
| int iTest = (iLow+iHigh)>>1; |
| u32 iPg = aFrame[aIndex[iTest]]; |
| |
| if( iPg==pgno ){ |
| iRead = iFrame + 1 + aIndex[iTest]; |
| break; |
| } |
| else if( iPg<pgno ){ |
| iLow = iTest+1; |
| }else{ |
| iHigh = iTest-1; |
| } |
| } |
| } |
| assert( iRead==0 || aData[walIndexEntry(iRead)]==pgno ); |
| walIndexUnmap(pWal); |
| |
| /* If iRead is non-zero, then it is the log frame number that contains the |
| ** required page. Read and return data from the log file. |
| */ |
| if( iRead ){ |
| i64 iOffset = walFrameOffset(iRead, pWal->hdr.pgsz) + WAL_FRAME_HDRSIZE; |
| *pInWal = 1; |
| return sqlite3OsRead(pWal->pFd, pOut, pWal->hdr.pgsz, iOffset); |
| } |
| |
| *pInWal = 0; |
| return SQLITE_OK; |
| } |
| |
| |
| /* |
| ** Set *pPgno to the size of the database file (or zero, if unknown). |
| */ |
| void sqlite3WalDbsize(Wal *pWal, Pgno *pPgno){ |
| assert( pWal->lockState==SQLITE_SHM_READ |
| || pWal->lockState==SQLITE_SHM_WRITE ); |
| *pPgno = pWal->hdr.nPage; |
| } |
| |
| /* |
| ** This function returns SQLITE_OK if the caller may write to the database. |
| ** Otherwise, if the caller is operating on a snapshot that has already |
| ** been overwritten by another writer, SQLITE_BUSY is returned. |
| */ |
| int sqlite3WalWriteLock(Wal *pWal, int op){ |
| int rc; |
| if( op ){ |
| assert( pWal->lockState == SQLITE_SHM_READ ); |
| rc = walSetLock(pWal, SQLITE_SHM_WRITE); |
| |
| /* If this connection is not reading the most recent database snapshot, |
| ** it is not possible to write to the database. In this case release |
| ** the write locks and return SQLITE_BUSY. |
| */ |
| if( rc==SQLITE_OK ){ |
| rc = walIndexMap(pWal, -1); |
| if( rc==SQLITE_OK |
| && memcmp(&pWal->hdr, pWal->pWiData, sizeof(WalIndexHdr)) |
| ){ |
| rc = SQLITE_BUSY; |
| } |
| walIndexUnmap(pWal); |
| if( rc!=SQLITE_OK ){ |
| walSetLock(pWal, SQLITE_SHM_READ); |
| } |
| } |
| }else if( pWal->lockState==SQLITE_SHM_WRITE ){ |
| rc = walSetLock(pWal, SQLITE_SHM_READ); |
| } |
| return rc; |
| } |
| |
| /* |
| ** The Wal object passed to this function must be holding the write-lock. |
| ** |
| ** If any data has been written (but not committed) to the log file, this |
| ** function moves the write-pointer back to the start of the transaction. |
| ** |
| ** Additionally, the callback function is invoked for each frame written |
| ** to the log since the start of the transaction. If the callback returns |
| ** other than SQLITE_OK, it is not invoked again and the error code is |
| ** returned to the caller. |
| ** |
| ** Otherwise, if the callback function does not return an error, this |
| ** function returns SQLITE_OK. |
| */ |
| int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ |
| int rc = SQLITE_OK; |
| Pgno iMax = pWal->hdr.iLastPg; |
| Pgno iFrame; |
| |
| assert( pWal->lockState==SQLITE_SHM_WRITE ); |
| walIndexReadHdr(pWal, 0); |
| for(iFrame=pWal->hdr.iLastPg+1; iFrame<=iMax && rc==SQLITE_OK; iFrame++){ |
| rc = xUndo(pUndoCtx, pWal->pWiData[walIndexEntry(iFrame)]); |
| } |
| walIndexUnmap(pWal); |
| return rc; |
| } |
| |
| /* Return an integer that records the current (uncommitted) write |
| ** position in the WAL |
| */ |
| u32 sqlite3WalSavepoint(Wal *pWal){ |
| assert( pWal->lockState==SQLITE_SHM_WRITE ); |
| return pWal->hdr.iLastPg; |
| } |
| |
| /* Move the write position of the WAL back to iFrame. Called in |
| ** response to a ROLLBACK TO command. |
| */ |
| int sqlite3WalSavepointUndo(Wal *pWal, u32 iFrame){ |
| int rc = SQLITE_OK; |
| u8 aCksum[8]; |
| assert( pWal->lockState==SQLITE_SHM_WRITE ); |
| |
| pWal->hdr.iLastPg = iFrame; |
| if( iFrame>0 ){ |
| i64 iOffset = walFrameOffset(iFrame, pWal->hdr.pgsz) + sizeof(u32)*2; |
| rc = sqlite3OsRead(pWal->pFd, aCksum, sizeof(aCksum), iOffset); |
| pWal->hdr.iCheck1 = sqlite3Get4byte(&aCksum[0]); |
| pWal->hdr.iCheck2 = sqlite3Get4byte(&aCksum[4]); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** Write a set of frames to the log. The caller must hold the write-lock |
| ** on the log file (obtained using sqlite3WalWriteLock()). |
| */ |
| int sqlite3WalFrames( |
| Wal *pWal, /* Wal handle to write to */ |
| int nPgsz, /* Database page-size in bytes */ |
| PgHdr *pList, /* List of dirty pages to write */ |
| Pgno nTruncate, /* Database size after this commit */ |
| int isCommit, /* True if this is a commit */ |
| int sync_flags /* Flags to pass to OsSync() (or 0) */ |
| ){ |
| int rc; /* Used to catch return codes */ |
| u32 iFrame; /* Next frame address */ |
| u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ |
| PgHdr *p; /* Iterator to run through pList with. */ |
| u32 aCksum[2]; /* Checksums */ |
| PgHdr *pLast; /* Last frame in list */ |
| int nLast = 0; /* Number of extra copies of last page */ |
| |
| assert( WAL_FRAME_HDRSIZE==(4 * 2 + 2*sizeof(u32)) ); |
| assert( pList ); |
| assert( pWal->lockState==SQLITE_SHM_WRITE ); |
| assert( pWal->pWiData==0 ); |
| |
| /* If this is the first frame written into the log, write the log |
| ** header to the start of the log file. See comments at the top of |
| ** this file for a description of the log-header format. |
| */ |
| assert( WAL_FRAME_HDRSIZE>=WAL_HDRSIZE ); |
| iFrame = pWal->hdr.iLastPg; |
| if( iFrame==0 ){ |
| sqlite3Put4byte(aFrame, nPgsz); |
| sqlite3_randomness(8, &aFrame[4]); |
| pWal->hdr.iCheck1 = sqlite3Get4byte(&aFrame[4]); |
| pWal->hdr.iCheck2 = sqlite3Get4byte(&aFrame[8]); |
| rc = sqlite3OsWrite(pWal->pFd, aFrame, WAL_HDRSIZE, 0); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| } |
| |
| aCksum[0] = pWal->hdr.iCheck1; |
| aCksum[1] = pWal->hdr.iCheck2; |
| |
| /* Write the log file. */ |
| for(p=pList; p; p=p->pDirty){ |
| u32 nDbsize; /* Db-size field for frame header */ |
| i64 iOffset; /* Write offset in log file */ |
| |
| iOffset = walFrameOffset(++iFrame, nPgsz); |
| |
| /* Populate and write the frame header */ |
| nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0; |
| walEncodeFrame(aCksum, p->pgno, nDbsize, nPgsz, p->pData, aFrame); |
| rc = sqlite3OsWrite(pWal->pFd, aFrame, sizeof(aFrame), iOffset); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| /* Write the page data */ |
| rc = sqlite3OsWrite(pWal->pFd, p->pData, nPgsz, iOffset + sizeof(aFrame)); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| pLast = p; |
| } |
| |
| /* Sync the log file if the 'isSync' flag was specified. */ |
| if( sync_flags ){ |
| i64 iSegment = sqlite3OsSectorSize(pWal->pFd); |
| i64 iOffset = walFrameOffset(iFrame+1, nPgsz); |
| |
| assert( isCommit ); |
| |
| if( iSegment<SQLITE_DEFAULT_SECTOR_SIZE ){ |
| iSegment = SQLITE_DEFAULT_SECTOR_SIZE; |
| } |
| iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment); |
| while( iOffset<iSegment ){ |
| walEncodeFrame(aCksum,pLast->pgno,nTruncate,nPgsz,pLast->pData,aFrame); |
| rc = sqlite3OsWrite(pWal->pFd, aFrame, sizeof(aFrame), iOffset); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| iOffset += WAL_FRAME_HDRSIZE; |
| rc = sqlite3OsWrite(pWal->pFd, pLast->pData, nPgsz, iOffset); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| nLast++; |
| iOffset += nPgsz; |
| } |
| |
| rc = sqlite3OsSync(pWal->pFd, sync_flags); |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| } |
| assert( pWal->pWiData==0 ); |
| |
| /* Append data to the log summary. It is not necessary to lock the |
| ** wal-index to do this as the RESERVED lock held on the db file |
| ** guarantees that there are no other writers, and no data that may |
| ** be in use by existing readers is being overwritten. |
| */ |
| iFrame = pWal->hdr.iLastPg; |
| for(p=pList; p; p=p->pDirty){ |
| iFrame++; |
| walIndexAppend(pWal, iFrame, p->pgno); |
| } |
| while( nLast>0 ){ |
| iFrame++; |
| nLast--; |
| walIndexAppend(pWal, iFrame, pLast->pgno); |
| } |
| |
| /* Update the private copy of the header. */ |
| pWal->hdr.pgsz = nPgsz; |
| pWal->hdr.iLastPg = iFrame; |
| if( isCommit ){ |
| pWal->hdr.iChange++; |
| pWal->hdr.nPage = nTruncate; |
| } |
| pWal->hdr.iCheck1 = aCksum[0]; |
| pWal->hdr.iCheck2 = aCksum[1]; |
| |
| /* If this is a commit, update the wal-index header too. */ |
| if( isCommit ){ |
| walIndexWriteHdr(pWal, &pWal->hdr); |
| pWal->iCallback = iFrame; |
| } |
| walIndexUnmap(pWal); |
| |
| return rc; |
| } |
| |
| /* |
| ** Checkpoint the database: |
| ** |
| ** 1. Acquire a CHECKPOINT lock |
| ** 2. Copy the contents of the log into the database file. |
| ** 3. Zero the wal-index header (so new readers will ignore the log). |
| ** 4. Drop the CHECKPOINT lock. |
| */ |
| int sqlite3WalCheckpoint( |
| Wal *pWal, /* Wal connection */ |
| sqlite3_file *pFd, /* File descriptor open on db file */ |
| int sync_flags, /* Flags to sync db file with (or 0) */ |
| u8 *zBuf, /* Temporary buffer to use */ |
| int (*xBusyHandler)(void *), /* Pointer to busy-handler function */ |
| void *pBusyHandlerArg /* Argument to pass to xBusyHandler */ |
| ){ |
| int rc; /* Return code */ |
| int isChanged = 0; /* True if a new wal-index header is loaded */ |
| |
| assert( pWal->lockState==SQLITE_SHM_UNLOCK ); |
| assert( pWal->pWiData==0 ); |
| |
| /* Get the CHECKPOINT lock */ |
| do { |
| rc = walSetLock(pWal, SQLITE_SHM_CHECKPOINT); |
| }while( rc==SQLITE_BUSY && xBusyHandler(pBusyHandlerArg) ); |
| if( rc!=SQLITE_OK ){ |
| walSetLock(pWal, SQLITE_SHM_UNLOCK); |
| return rc; |
| } |
| |
| /* Copy data from the log to the database file. */ |
| rc = walIndexReadHdr(pWal, &isChanged); |
| if( rc==SQLITE_OK ){ |
| rc = walCheckpoint(pWal, pFd, sync_flags, zBuf); |
| } |
| if( isChanged ){ |
| /* If a new wal-index header was loaded before the checkpoint was |
| ** performed, then the pager-cache associated with log pWal is now |
| ** out of date. So zero the cached wal-index header to ensure that |
| ** next time the pager opens a snapshot on this database it knows that |
| ** the cache needs to be reset. |
| */ |
| memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); |
| } |
| |
| /* Release the locks. */ |
| walIndexUnmap(pWal); |
| walSetLock(pWal, SQLITE_SHM_UNLOCK); |
| return rc; |
| } |
| |
| /* Return the value to pass to a sqlite3_wal_hook callback, the |
| ** number of frames in the WAL at the point of the last commit since |
| ** sqlite3WalCallback() was called. If no commits have occurred since |
| ** the last call, then return 0. |
| */ |
| int sqlite3WalCallback(Wal *pWal){ |
| u32 ret = 0; |
| if( pWal ){ |
| ret = pWal->iCallback; |
| pWal->iCallback = 0; |
| } |
| return (int)ret; |
| } |
| #endif /* #ifndef SQLITE_OMIT_WAL */ |