๐ŸŒ AIๆœ็ดข & ไปฃ็† ไธป้กต
Skip to content

A new package that allows users to write SQL queries using a simplified, Tailwind CSS-like syntax. It takes natural language or abbreviated input from the user and converts it into valid, structured S

Notifications You must be signed in to change notification settings

chigwell/tailwind-sql

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

1 Commit
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

Tailwind-SQL

PyPI version License: MIT Downloads LinkedIn

Write SQL queries with Tailwind CSS-like simplicity

Tailwind-SQL lets you generate SQL queries using a natural language or utility-first approach inspired by Tailwind CSS. Perfect for developers and analysts who want to write database queries intuitively without deep SQL expertise.


๐Ÿš€ Features

  • Utility-first SQL: Write queries using a simplified, intuitive syntax
  • LLM-powered: Uses advanced language models to convert natural language into valid SQL
  • Flexible: Works with any LangChain-compatible LLM (default: LLM7)
  • Type-safe: Returns structured SQL output ready for execution

๐Ÿ“ฆ Installation

pip install tailwind_sql

๐Ÿ”ง Usage

Basic Usage (with default LLM7)

from tailwind_sql import tailwind_sql

# Simple query generation
response = tailwind_sql("Show me all users from New York with active status")
print(response)

Custom LLM Integration

You can use any LangChain-compatible LLM by passing it as the llm parameter:

With OpenAI

from langchain_openai import ChatOpenAI
from tailwind_sql import tailwind_sql

llm = ChatOpenAI()
response = tailwind_sql("Select top 10 customers ordered by purchase amount", llm=llm)

With Anthropic

from langchain_anthropic import ChatAnthropic
from tailwind_sql import tailwind_sql

llm = ChatAnthropic()
response = tailwind_sql("Find all inactive users from last quarter", llm=llm)

With Google Generative AI

from langchain_google_genai import ChatGoogleGenerativeAI
from tailwind_sql import tailwind_sql

llm = ChatGoogleGenerativeAI()
response = tailwind_sql("Calculate monthly revenue by product category", llm=llm)

๐Ÿ”‘ API Key Configuration

Default (LLM7)

  • Uses LLM7's free tier by default
  • API key can be set via environment variable:
    export LLM7_API_KEY="your_api_key"
  • Or passed directly:
    from tailwind_sql import tailwind_sql
    response = tailwind_sql("Query example", api_key="your_api_key")

Custom LLM

For other LLMs, simply pass your configured LLM instance as shown in the examples above.


๐Ÿ“ Input Parameters

Parameter Type Description
user_input str The natural language or utility-style query input
llm Optional[BaseChatModel] Custom LangChain LLM instance (optional)
api_key Optional[str] LLM7 API key (optional, defaults to environment variable)

๐Ÿ“Š Example Queries

Natural Language Input

tailwind_sql("Find all customers who made purchases over $1000 in 2023")

Utility-Style Input (Tailwind-like)

tailwind_sql("select * from users where status='active' and location='New York' order by created_at desc limit 100")

๐Ÿ”„ Rate Limits

  • LLM7 Free Tier: Sufficient for most use cases
  • Custom LLM: No rate limits (depends on your provider)
  • Upgrade: For higher LLM7 limits, pass your own API key

๐Ÿ“œ License

MIT


๐Ÿ“ข Support & Issues

For support or to report issues, please open a GitHub issue: https://github.com/chigwell/tailwind-sql/issues


๐Ÿ‘ค Author

Eugene Evstafev ๐Ÿ“ง hi@euegne.plus ๐Ÿ”— @chigwell


๐Ÿ“š Related Projects

  • LLM7 - Default LLM provider
  • LangChain - Framework for LLM integration
  • Tailwind CSS - Inspiration for utility-first approach

About

A new package that allows users to write SQL queries using a simplified, Tailwind CSS-like syntax. It takes natural language or abbreviated input from the user and converts it into valid, structured S

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages