🌐 AI搜索 & 代理 主页
Skip to main content

OntoAligner: A Comprehensive Modular and Robust Python Toolkit for Ontology Alignment.

Project description

OntoAligner Logo

PyPI version PyPI Downloads License pre-commit Documentation Status Maintenance DOI

OntoAligner: A Comprehensive Modular and Robust Python Toolkit for Ontology Alignment

OntoAligner is a Python library designed to simplify ontology alignment and matching for researchers, practitioners, and developers. With a modular architecture and robust features, OntoAligner provides powerful tools to bridge ontologies effectively.

🧪 Installation

You can install OntoAligner from PyPI using pip:

pip install ontoaligner

Alternatively, to get the latest version directly from the source, use the following commands:

git clone git@github.com:sciknoworg/OntoAligner.git
pip install ./ontoaligner

Next, verify the installation:

import ontoaligner

print(ontoaligner.__version__)

📚 Documentation

Comprehensive documentation for OntoAligner, including detailed guides and examples, is available at ontoaligner.readthedocs.io. Below are some key tutorials with links to both the documentation and the corresponding example codes.

Example Tutorial Script
Lightweight 📚 Fuzzy Matching 📝 Code
Retrieval 📚 Retrieval Aligner 📝 Code
Large Language Models 📚 LLM Aligner 📝 Code
Retrieval Augmented Generation 📚 RAG Aligner 📝 Code
FewShot 📚 FewShot-RAG Aligner 📝 Code
In-Context Vectors Learning 📚 In-Context Vectors RAG 📝 Code
Knowledge Graph Embedding 📚 KGE Aligner 📝 Code
Property Alignment 📚 PropMatch Aligner 📝 Code
eCommerce 📚 Product Alignment in eCommerce 📝 Code

🚀 Quick Tour

Below is an example of using Retrieval-Augmented Generation (RAG) step-by-step approach for ontology matching:

from ontoaligner.ontology import MaterialInformationMatOntoOMDataset
from ontoaligner.utils import metrics, xmlify
from ontoaligner.aligner import MistralLLMBERTRetrieverRAG
from ontoaligner.encoder import ConceptParentRAGEncoder
from ontoaligner.postprocess import rag_hybrid_postprocessor

# Step 1: Initialize the dataset object for MaterialInformation MatOnto dataset
task = MaterialInformationMatOntoOMDataset()
print("Test Task:", task)

# Step 2: Load source and target ontologies along with reference matchings
dataset = task.collect(
    source_ontology_path="assets/MI-MatOnto/mi_ontology.xml",
    target_ontology_path="assets/MI-MatOnto/matonto_ontology.xml",
    reference_matching_path="assets/MI-MatOnto/matchings.xml"
)

# Step 3: Encode the source and target ontologies
encoder_model = ConceptParentRAGEncoder()
encoded_ontology = encoder_model(source=dataset['source'], target=dataset['target'])

# Step 4: Define configuration for retriever and LLM
retriever_config = {"device": 'cuda', "top_k": 5}
llm_config = {"device": "cuda", "max_length": 300, "max_new_tokens": 10, "batch_size": 15}

# Step 5: Initialize Generate predictions using RAG-based ontology matcher
model = MistralLLMBERTRetrieverRAG(retriever_config=retriever_config, llm_config=llm_config)
model.load(llm_path = "mistralai/Mistral-7B-v0.3", ir_path="all-MiniLM-L6-v2")
predicts = model.generate(input_data=encoded_ontology)

# Step 6: Apply hybrid postprocessing
hybrid_matchings, hybrid_configs = rag_hybrid_postprocessor(predicts=predicts,
                                                            ir_score_threshold=0.1,
                                                            llm_confidence_th=0.8)

evaluation = metrics.evaluation_report(predicts=hybrid_matchings, references=dataset['reference'])
print("Hybrid Matching Evaluation Report:", evaluation)

# Step 7: Convert matchings to XML format and save the XML representation
xml_str = xmlify.xml_alignment_generator(matchings=hybrid_matchings)
open("matchings.xml", "w", encoding="utf-8").write(xml_str)

Ontology alignment pipeline using RAG method:

import ontoaligner

pipeline = ontoaligner.OntoAlignerPipeline(
    task_class=ontoaligner.ontology.MouseHumanOMDataset,
    source_ontology_path="assets/MI-MatOnto/mi_ontology.xml",
    target_ontology_path="assets/MI-MatOnto/matonto_ontology.xml",
    reference_matching_path="assets/MI-MatOnto/matchings.xml"
)

matchings, evaluation = pipeline(
    method="rag",
    encoder_model=ontoaligner.encoder.ConceptRAGEncoder(),
    model_class=ontoaligner.aligner.MistralLLMBERTRetrieverRAG,
    postprocessor=ontoaligner.postprocess.rag_hybrid_postprocessor,
    llm_path='mistralai/Mistral-7B-v0.3',
    retriever_path='all-MiniLM-L6-v2',
    llm_threshold=0.5,
    ir_rag_threshold=0.7,
    top_k=5,
    max_length=512,
    max_new_tokens=10,
    device='cuda',
    batch_size=32,
    return_matching=True,
    evaluate=True
)

print("Matching Evaluation Report:", evaluation)

👥 Contact & Contributions

We welcome contributions to enhance OntoAligner and make it even better! Please review our contribution guidelines in CONTRIBUTING.md before getting started. You are also welcome to assist with the ongoing maintenance by referring to MAINTENANCE.md. Your support is greatly appreciated.

If you encounter any issues or have questions, please submit them in the GitHub issues tracker.

📚 Citing this Work

If you use OntoAligner in your work or research, please cite the following preprint:

  • OntoAligner Library:

    Babaei Giglou, H., D’Souza, J., Karras, O., Auer, S. (2025). OntoAligner: A Comprehensive Modular and Robust Python Toolkit for Ontology Alignment. In: Curry, E., et al. The Semantic Web. ESWC 2025. Lecture Notes in Computer Science, vol 15719. Springer, Cham. https://doi.org/10.1007/978-3-031-94578-6_10

    📌 BibTeX

    @InProceedings{10.1007/978-3-031-94578-6_10,
        author="Babaei Giglou, Hamed and D'Souza, Jennifer and Karras, Oliver and Auer, S{\"o}ren",
        editor="Curry, Edward and Acosta, Maribel and Poveda-Villal{\'o}n, Maria and van Erp, Marieke and Ojo, Adegboyega and Hose, Katja and Shimizu, Cogan and Lisena, Pasquale",
        title="OntoAligner: A Comprehensive Modular and Robust Python Toolkit for Ontology Alignment",
        booktitle="The Semantic Web",
        year="2025",
        publisher="Springer Nature Switzerland",
        address="Cham",
        pages="174--191"
    }
    
  • LLMs4OM (for RAG module)

    Babaei Giglou, H., D’Souza, J., Engel, F., Auer, S. (2025). LLMs4OM: Matching Ontologies with Large Language Models. In: Meroño Peñuela, A., et al. The Semantic Web: ESWC 2024 Satellite Events. ESWC 2024. Lecture Notes in Computer Science, vol 15344. Springer, Cham. https://doi.org/10.1007/978-3-031-78952-6_3

    📌 BibTeX

    @InProceedings{10.1007/978-3-031-78952-6_3,
      author="Babaei Giglou, Hamed and D'Souza, Jennifer and Engel, Felix and Auer, S{\"o}ren",
      editor="Mero{\~{n}}o Pe{\~{n}}uela, Albert and Corcho, Oscar and Groth, Paul and Simperl, Elena and Tamma, Valentina and Nuzzolese, Andrea Giovanni and Poveda-Villal{\'o}n, Maria and Sabou, Marta and Presutti, Valentina and Celino, Irene and Revenko, Artem and Raad, Joe and Sartini, Bruno and Lisena, Pasquale",
      title="LLMs4OM: Matching Ontologies with Large Language Models",
      booktitle="The Semantic Web: ESWC 2024 Satellite Events",
      year="2025",
      publisher="Springer Nature Switzerland",
      address="Cham",
      pages="25--35",
      isbn="978-3-031-78952-6"
      }
    

📃 License

This software is licensed under License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ontoaligner-1.6.0.tar.gz (136.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

ontoaligner-1.6.0-py3-none-any.whl (137.5 kB view details)

Uploaded Python 3

File details

Details for the file ontoaligner-1.6.0.tar.gz.

File metadata

  • Download URL: ontoaligner-1.6.0.tar.gz
  • Upload date:
  • Size: 136.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.2.1 CPython/3.10.19 Linux/6.11.0-1018-azure

File hashes

Hashes for ontoaligner-1.6.0.tar.gz
Algorithm Hash digest
SHA256 e14dd9a7a31b098f66571200081af128d8901dc8c705a9dfc182251d7989764c
MD5 0006f0250c4731e596d103a2de2db787
BLAKE2b-256 0e3196eb1c03c6ea9406b517b59be1ed31567810763657b75d3bb7751188500a

See more details on using hashes here.

File details

Details for the file ontoaligner-1.6.0-py3-none-any.whl.

File metadata

  • Download URL: ontoaligner-1.6.0-py3-none-any.whl
  • Upload date:
  • Size: 137.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.2.1 CPython/3.10.19 Linux/6.11.0-1018-azure

File hashes

Hashes for ontoaligner-1.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d9b6b4a92e4d80d80f1f851e537d1c3883fcea0f1307df87b94d80be4b6e65fa
MD5 d9cf8e2575bd23bb63daa41b3fb6e99a
BLAKE2b-256 d6b7fa44daf2a2ecf15aacb68e033455a4d3ae1e70589e71c7b57fc2269c252c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page